vietjack.com

15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên có đáp án
Quiz

15 câu trắc nghiệm Toán 9 Kết nối tri thức Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên có đáp án

2
2048.vn Content
ToánLớp 93 lượt thi
15 CÂU HỎI
1. Nhiều lựa chọn
1 điểmKhông giới hạn

I. Nhận biết

Chu vi đường tròn có bán kính \[R = 9\] là

\[9\pi .\]

\[18\pi .\]

\[27\pi .\]

\[12\pi .\]

Xem đáp án
2. Nhiều lựa chọn
1 điểmKhông giới hạn

Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là

\[{S_v} = \pi {R^2} - {r^2}.\]

\[{S_v} = \pi {\left( {R - r} \right)^2}.\]

\[{S_v} = \pi \left( {{R^2} - {r^2}} \right).\]

\[{S_v} = \pi \left( {{r^2} - {R^2}} \right).\]

Xem đáp án
3. Nhiều lựa chọn
1 điểmKhông giới hạn

Tỉ số giữa độ dài cung \[n^\circ \] và chu vi đường tròn (cùng bán kính) luôn bằng

\[\frac{1}{n}.\]

\[\frac{1}{2}.\]

\[\frac{n}{{180}}.\]

\[\frac{n}{{360}}.\]

Xem đáp án
4. Nhiều lựa chọn
1 điểmKhông giới hạn

Phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai đầu mút của cung tròn đó được gọi là

Hình quạt tròn.

Hình vành khuyên.

Hình vành khăn.

Hình viên phân.

Xem đáp án
5. Nhiều lựa chọn
1 điểmKhông giới hạn

Độ dài cung \[30^\circ \] của một đường tròn có bán kính \[4{\rm{\;dm}}\] là

\[\frac{{4\pi }}{3}{\rm{\;dm}}.\]

\[\frac{{2\pi }}{3}{\rm{\;dm}}.\]

\[\frac{\pi }{3}{\rm{\;dm}}.\]

\[\frac{\pi }{6}{\rm{\;dm}}.\]

Xem đáp án
6. Nhiều lựa chọn
1 điểmKhông giới hạn

II. Thông hiểu

Số đo \[n^\circ \] của cung tròn có độ dài \[30,8{\rm{\;cm}}\] trên đường tròn có bán kính \[22{\rm{\;cm}}\] (lấy \[\pi \approx 3,14\] và làm tròn đến độ) là

\[85^\circ .\]

\[65^\circ .\]

\[70^\circ .\]

\[80^\circ .\]

Xem đáp án
7. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho tam giác \[ABC\] vuông tại \[A,\] cạnh \[AB = 5{\rm{\;cm}},\,\,\widehat {B\,} = 60^\circ .\] Đường tròn tâm \[I,\] đường kính \[AB\] cắt \[BC\] ở \[D.\] Khẳng định nào sau đây là sai?

Độ dài cung nhỏ \[BD\] của đường tròn \[\left( I \right)\] là \[\frac{\pi }{6}{\rm{\;cm}}.\]

\[AD \bot BC.\]

\[D\] thuộc đường tròn đường kính \[AC.\]

Số đo của cung nhỏ \[BD\] là \(60^\circ .\)

Xem đáp án
8. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho đường tròn \[\left( {O;10{\rm{\;cm}}} \right)\] đường kính \[AB.\] Điểm \[M \in \left( O \right)\] sao cho \[\widehat {BAM} = 45^\circ .\] Diện tích hình quạt \[AOM\] bằng

\[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[\frac{{25}}{2}\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[5\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[50\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
9. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho đường tròn \[\left( O \right)\] đường kính \[AB = 2\sqrt 2 {\rm{\;cm}}.\] Điểm \[C \in \left( O \right)\] sao cho \[\widehat {ABC} = 30^\circ .\] Diện tích hình quạt \[BAC\] bằng

\[\frac{{4\sqrt 2 }}{3}\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[\frac{{2\sqrt 2 }}{3}\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[\frac{{4\pi }}{3}{\rm{\;c}}{{\rm{m}}^2}.\]

\[\frac{{8\pi }}{3}{\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
10. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho tam giác \[ABC\] đều có ba đỉnh nằm trên đường tròn \[\left( O \right).\] Độ dài các cung \[AB,BC,CA\] đều bằng \[6\pi {\rm{\;cm}}.\] Diện tích của đường tròn \[\left( O \right)\] là

\[32\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[18\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[9\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[27\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
11. Nhiều lựa chọn
1 điểmKhông giới hạn

Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có đường kính lần lượt là \[8{\rm{\;cm}}\] và \[6{\rm{\;cm}}\] bằng

\[\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[\frac{7}{2}\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
12. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình vành khuyên giới hạn bởi hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O;r} \right),\] biết rằng \[r = 7{\rm{\;cm}}\] và \[R\] gấp \[3\] lần \[r\]. Diện tích của hình vành khuyên đó bằng

\[392\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[392{\rm{\;c}}{{\rm{m}}^2}.\]

\[490\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[245\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
13. Nhiều lựa chọn
1 điểmKhông giới hạn

III. Vận dụng

Cho sân cỏ như hình vẽ, biết rằng \[OB = 10{\rm{\;m}},\,\,\widehat {AOB} = 80^\circ .\]

Cho sân cỏ như hình vẽ, biết rằng  O B = 10 m , ˆ A O B = 80 ∘ . Độ dài đoạn hàng rào quanh sân từ  A  đến  B  của sân cỏ (làm tròn kết quả đến hàng phần trăm) là (ảnh 1)

Độ dài đoạn hàng rào quanh sân từ \[A\] đến \[B\] của sân cỏ (làm tròn kết quả đến hàng phần trăm)

\[488,69{\rm{\;m}}{\rm{.}}\]

\[69,81{\rm{\;m}}.\]

\[13,96{\rm{\;m}}.\]

\[6,98{\rm{\;m}}.\]

Xem đáp án
14. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài \[55{\rm{\;cm}}\] và cung có số đo \[95^\circ \] (hình vẽ).

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài  55 c m  và cung có số đo  95 ∘  (hình vẽ). Diện tích hình viên phân đó (làm tròn kết quả đến hàng phần trăm) là (ảnh 1)

Diện tích hình viên phân đó (làm tròn kết quả đến hàng phần trăm)

\[680,65{\rm{\;c}}{{\rm{m}}^2}.\]

\[460,41{\rm{\;c}}{{\rm{m}}^2}.\]

\[692,98{\rm{\;c}}{{\rm{m}}^2}.\]

\[1153,39{\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
15. Nhiều lựa chọn
1 điểmKhông giới hạn

Hình vẽ dưới đây mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là \[15{\rm{\;cm}},\,\,18{\rm{\;cm}},\,\,21{\rm{\;cm}},\,\,24{\rm{\;cm}}.\]

Hình vẽ dưới đây mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là  15 c m , 18 c m , 21 c m , 24 c m . (ảnh 1)

Khi đó tổng diện tích hai hình vành khuyên đó bằng

\[234\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[99\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[135\pi {\rm{\;c}}{{\rm{m}}^2}.\]

\[216\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Xem đáp án
© All rights reserved VietJack