vietjack.com

12 bài tập Xác định các điểm mà đường thẳng đi qua có lời giải
Quiz

12 bài tập Xác định các điểm mà đường thẳng đi qua có lời giải

2
2048.vn Content
ToánLớp 91 lượt thi
10 CÂU HỎI
1. Nhiều lựa chọn
1 điểmKhông giới hạn

Cặp số nào dưới đây là thuộc đường thẳng biểu diễn nghiệm của phương trình 2x – 5y = 19?

(2; −3).

(1; 1).

(1; −2).

(12; −1).

Xem đáp án
2. Nhiều lựa chọn
1 điểmKhông giới hạn

Điểm có tọa độ (−2; 2) thuộc đường thẳng nào dưới đây?

2x – y = 2.

2x + y = 2.

2x – y = 0.

2x + y = −2.

Xem đáp án
3. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho phương trình (m – 2)x + (m + 1)y = 2m – 1. Giá trị của m để phương trình có nghiệm (2; 3) là

m = 0.

m = 1.

m = 2.

m = 3.

Xem đáp án
4. Nhiều lựa chọn
1 điểmKhông giới hạn

Cho đường thẳng d có phương trình (2m – 1)x + 3(m – 1)y = 4m – 2. Giá trị của m để đường thẳng d song song với trục Ox là:

m = 2.

m = 1.

m = \(\frac{1}{2}.\)

m = \( - \frac{1}{2}.\)

Xem đáp án
5. Nhiều lựa chọn
1 điểmKhông giới hạn

Điểm nào dưới đây cùng thuộc hai đường thẳngy = −2x – 1 và y = \( - \frac{1}{2}\)x + 2?

A(2; 3).

B(−2; 3).

C(3; 2).

(3; −2).

Xem đáp án
6. Nhiều lựa chọn
1 điểmKhông giới hạn

Tìm giá trị của tham số m để cặp số (2; −1) là nghiệm của phương trình

mx – 5y = 3m – 1?

m = 3.

m = 2.

m = 6.

m = −6.

Xem đáp án
7. Nhiều lựa chọn
1 điểmKhông giới hạn

Tìm giá trị của tham số m để đường thẳng d có phương trình

(2m – 3)x + (3m – 1)y = m + 2 đi qua gốc tọa độ.

m = 2.

m = −2.

m = \(\frac{3}{2}.\)

m = \(\frac{1}{3}.\)

Xem đáp án
8. Nhiều lựa chọn
1 điểmKhông giới hạn

Tìm giá trị của tham số m để điểm Q(2; 1) thuộc đường thẳng

(2m – 1)x + (3m – 1)y = 6m – 2 ?

m = 1.

m = −1.

m = 0.

m = 2.

Xem đáp án
9. Nhiều lựa chọn
1 điểmKhông giới hạn

Khi m thay đổi, đường thẳng m(x – 5) – 2y = 6 luôn đi qua điểm nào dưới đây?

M(5; 3).

N(5; −3).

P(0; −3)

Q(−3; 5).

Xem đáp án
10. Nhiều lựa chọn
1 điểmKhông giới hạn

Khi m thay đổi, đường thẳng mx – 2y = 6 luôn đi qua điểm nào dưới đây?

A(0; 3).

B(3; 0).

C(0; −3).

D(−3; 0).

Xem đáp án
© All rights reserved VietJack