12 bài tập Rút gọn biểu thức có chứa căn thức bậc hai có lời giải
12 câu hỏi
Rút gọn biểu thức \(A = \left( {\frac{1}{{\sqrt x - 2}} + \frac{1}{{\sqrt x + 2}}} \right).\frac{{x - 4}}{{\sqrt x }}\) (x > 0, x ≠ 4).
Rút gọn biểu thức \(A = \left( {\frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{\sqrt a + 1}}{{\sqrt a - 1}}} \right).\left( {1 - \frac{2}{{a + 1}}} \right)\) (a ≥ 0, a ≠ 1).
Rút gọn biểu thức \(A = \left( {\frac{{\sqrt a - 2}}{{\sqrt a + 2}} - \frac{{\sqrt a + 2}}{{\sqrt a - 2}}} \right).\left( {\sqrt a - \frac{2}{{\sqrt a }}} \right)\) (a > 0, a ≠ 4).
Rút gọn biểu thức \(A = \frac{{5\sqrt x - 3}}{{\sqrt x - 2}} + \frac{{3\sqrt x + 1}}{{\sqrt x + 2}} - \frac{{x + 2\sqrt x - 8}}{{x - 4}}\) (x ≥ 0, x ≠ 4).
Rút gọn biểu thức \(A = \frac{{5 - 5\sqrt x }}{{x - 16}} - \frac{2}{{4 - \sqrt x }} + \frac{3}{{\sqrt x + 4}}\) (x ≥ 0, x ≠ 16).
Rút gọn biểu thức \(A = \frac{{\sqrt x }}{{2\sqrt x - 3}} + \frac{{\sqrt x - 2}}{{2\sqrt x + 3}} + \frac{{15 - 4\sqrt x }}{{9 - 4x}}\) (x ≥ 0, x ≠ \(\frac{9}{4}\)).
Cho biểu thức \(A = \frac{{x - 2\sqrt x + 2}}{{\sqrt x }}\) và \(B = \frac{{2x + \sqrt x - 4}}{{x + 2\sqrt x }} - \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\) với x > 0. Rút gọn biểu thức \(P = \frac{A}{B}\).
Rút gọn biểu thức \(B = \frac{{2\sqrt x + 3}}{{\sqrt x - 3}} + \frac{{\sqrt x + 3}}{{4 - \sqrt x }} - \frac{{x - 6\sqrt x }}{{x - 7\sqrt x + 12}}\) với x ≥ 0, x ≠ 9, x ≠ 16.
Rút gọn biểu thức \(B = \frac{{2\sqrt x }}{{\sqrt x + 3}} - \frac{{\sqrt x + 1}}{{\sqrt x - 3}} - \frac{{7\sqrt x + 3}}{{9 - x}}\) (x > 0, x ≠ 9).
Rút gọn biểu thức \(A = \left( {\frac{{2\sqrt x }}{{\sqrt x + 3}} + \frac{{\sqrt x }}{{\sqrt x - 3}} + \frac{{3x + 3}}{{9 - x}}} \right):\left( {\frac{{2\sqrt x - 2}}{{\sqrt x - 3}} - 1} \right)\)
(x > 0, x ≠ 9).
Rút gọn biểu thức \(P = \left( {1 + \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right):\frac{{\sqrt x + 1}}{{x\sqrt x - 1}}\) (x ≥ 0, x ≠ 1).
Rút gọn biểu thức \(A = \left( {\frac{{x + 3}}{{x - 9}} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{\sqrt x }}{{\sqrt x + 3}}\) (x ≥ 0, x ≠ 9).






