vietjack.com

Tổng hợp đề thi thử tiếng anh thpt quốc gia (Đề số 29)
Quiz

Tổng hợp đề thi thử tiếng anh thpt quốc gia (Đề số 29)

V
VietJack
Tiếng AnhTốt nghiệp THPT3 lượt thi
50 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word whose underlined part differs from the other three in pronunciation in each of the following questions.

keep

know

knife

knee

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word whose underlined part differs from the other three in pronunciation in each of the following questions.

pleasure

television

preserve

decision

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word that differs from the other three in the position of primary stress in each of the following questions

attract

polite

promise

approach

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word that differs from the other three in the position of primary stress in each of the following questions

media

belief

culture

actor

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word(s) OPPOSITE in meaning to the underlined word(s) in each of the following questions.

Polluted water and increased water temperatures have driven many species to the verge of extinction.

Enriched

Contaminated

Strengthened

Purified

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word(s) OPPOSITE in meaning to the underlined word(s) in each of the following questions.

English is a compulsory subject in most of the schools in our country.

required

paid

optional

dependent

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word(s) CLOSEST in meaning to the underlined word(s) in each of the following questions.

I was completely mesmerized by Cristiano Ronaldo’s performance. He is really one of the greatest footballers of all time.

fascinated

amazed

uninspired

rewarded

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the word(s) CLOSEST in meaning to the underlined word(s) in each of the following questions.

When Kelly invited us to dinner, she really showed off her culinary talents. She prepared a feast - a huge selection of dishes that were simply mouth-watering.

relating to medical knowledge

involving hygienic conditions and diseases

concerning nutrition and health

having to do with food and cooking

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, Bf C, or D on your answer sheet to indicate the sentence that best completes each of the following exchanges.

Sally and Susan are talking about the dancing show they have just watched.

- Sally: “What a fantastic performance! Thank you for inviting me to the musical.”

- Susan: “_____________ I’m happy you enjoyed the show.”

You are welcome.

Thanks. That’s why I didn’t like dancing

Are you kidding?

No way

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, Bf C, or D on your answer sheet to indicate the sentence that best completes each of the following exchanges.

Peter is telling Alex about his father’s health condition.

Peter: “My father’s much better now.” - Alex: “_____________”

Oh, I’m pleased to hear it.

Wonderful! Congratulations on your success!

Oh, really? You must be very tired.

Bad news for you.

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

Da Vinci’s Mona Lisa is _____________; if it was destroyed no amount of money could ever replace it.

worthless

valueless

priceless

invaluable

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

He is exhausted. He _____________ around the whole afternoon trying to clean the house before the guests arrive.

has been running

run

be running

was running

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

He has received numerous honours and prizes in _____________ of his remarkable achievements.

unrecognizable

recognize

recognizable

recognition

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

If you knew he was ill, why _____________ you _____________ to see him?

didn’t / come

wouldn’t / come

should/come

would/come

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

You need to make _____________ about what course you should take at university.

a decision

a fortune

a guess

an impression

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

Tim is nearsighted. He _____________ glasses ever since he was nine years old.

should have worn

must wear

need wear

has had to wear

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

As a student, you envied your friends who were working and earning their own money, _____________?

were they

didn’t you

weren’t they

were you

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

 

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

Neither Mary nor her sister _____________ to attend the concert.

 

go

are going

have gone

is going

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

On Sundays, many people take their cars to service stations ____________.

to get the oil refilled

to get the oil refill

to refill the oil

to make the oil refilled

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

_____________ advised on what and how to prepare for the interview, he might have got the job.

Had he been

If he had

Unless he had been

Were he to be

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

My brother was worried about being interviewed on television, but he _____________ to the occasion wonderfully.

raised

rose

fell

faced

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the following questions.

The more difficult the job is, _____________.

the more interesting she finds

the more she finds it interesting

she finds it more interesting

the more interesting it is to her

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct word or phrase that best fits each of the numbered blanks from 23 to 27. Fill in the appropriate word in question 23

  We are all too well aware that the extinction of animal and plant species is one of the biggest and most horrifying threats (23) _____________ our planet these days. Having said that, there has recently

been some good news out of Russia regarding something called regeneration - a(n) (24) _____________ solution to this ever-growing problem.

  Regeneration involves (25) _____________ tissue from a plant or animal that has become extinct and ‘bringing it back to life’. In recent Russian experiments, scientists took fruit and seeds from the underground burrow of a long-dead Siberian squirrel and process to regenerate a beautiful flower called the Silene stenophylla. To date, it is the oldest plant to be produced from the innovative regeneration (26)____________  

  Understandably, experts are over the moon about their success as it shows once and for all that tissue can survive ice conservation for thousands of years. Those who participated in the regeneration of the flower are pleased and are now hoping to find prehistoric squirrel tissue or perhaps even (27) _____________ tissue from the great woolly mammoth, which could lead to the resurrection of those two species.

[From: STARLIGHT 8, Workbook, Express Publishing. 2010]

heading

facing

confronting

hallenging

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct word or phrase that best fits each of the numbered blanks from 23 to 27. Fill in the appropriate word in question 23

  We are all too well aware that the extinction of animal and plant species is one of the biggest and most horrifying threats (23) _____________ our planet these days. Having said that, there has recently

been some good news out of Russia regarding something called regeneration - a(n) (24) _____________ solution to this ever-growing problem.

  Regeneration involves (25) _____________ tissue from a plant or animal that has become extinct and ‘bringing it back to life’. In recent Russian experiments, scientists took fruit and seeds from the underground burrow of a long-dead Siberian squirrel and process to regenerate a beautiful flower called the Silene stenophylla. To date, it is the oldest plant to be produced from the innovative regeneration (26)____________  

  Understandably, experts are over the moon about their success as it shows once and for all that tissue can survive ice conservation for thousands of years. Those who participated in the regeneration of the flower are pleased and are now hoping to find prehistoric squirrel tissue or perhaps even (27) _____________ tissue from the great woolly mammoth, which could lead to the resurrection of those two species.

[From: STARLIGHT 8, Workbook, Express Publishing. 2010]

probable

possible

likely

expected

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct word or phrase that best fits each of the numbered blanks from 23 to 27. Fill in the appropriate word in question 25

  We are all too well aware that the extinction of animal and plant species is one of the biggest and most horrifying threats (23) _____________ our planet these days. Having said that, there has recently

been some good news out of Russia regarding something called regeneration - a(n) (24) _____________ solution to this ever-growing problem.

  Regeneration involves (25) _____________ tissue from a plant or animal that has become extinct and ‘bringing it back to life’. In recent Russian experiments, scientists took fruit and seeds from the underground burrow of a long-dead Siberian squirrel and process to regenerate a beautiful flower called the Silene stenophylla. To date, it is the oldest plant to be produced from the innovative regeneration (26)____________  

  Understandably, experts are over the moon about their success as it shows once and for all that tissue can survive ice conservation for thousands of years. Those who participated in the regeneration of the flower are pleased and are now hoping to find prehistoric squirrel tissue or perhaps even (27) _____________ tissue from the great woolly mammoth, which could lead to the resurrection of those two species.

[From: STARLIGHT 8, Workbook, Express Publishing. 2010]

pulling

moving

taking

bringing

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct word or phrase that best fits each of the numbered blanks from 23 to 27. Fill in the appropriate word in question 23

  We are all too well aware that the extinction of animal and plant species is one of the biggest and most horrifying threats (23) _____________ our planet these days. Having said that, there has recently

been some good news out of Russia regarding something called regeneration - a(n) (24) _____________ solution to this ever-growing problem.

  Regeneration involves (25) _____________ tissue from a plant or animal that has become extinct and ‘bringing it back to life’. In recent Russian experiments, scientists took fruit and seeds from the underground burrow of a long-dead Siberian squirrel and process to regenerate a beautiful flower called the Silene stenophylla. To date, it is the oldest plant to be produced from the innovative regeneration (26)____________  

  Understandably, experts are over the moon about their success as it shows once and for all that tissue can survive ice conservation for thousands of years. Those who participated in the regeneration of the flower are pleased and are now hoping to find prehistoric squirrel tissue or perhaps even (27) _____________ tissue from the great woolly mammoth, which could lead to the resurrection of those two species.

[From: STARLIGHT 8, Workbook, Express Publishing. 2010]

succeeded

managed

directed

conducted

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct word or phrase that best fits each of the numbered blanks from 23 to 27. Fill in the appropriate word in question 27

  We are all too well aware that the extinction of animal and plant species is one of the biggest and most horrifying threats (23) _____________ our planet these days. Having said that, there has recently

been some good news out of Russia regarding something called regeneration - a(n) (24) _____________ solution to this ever-growing problem.

  Regeneration involves (25) _____________ tissue from a plant or animal that has become extinct and ‘bringing it back to life’. In recent Russian experiments, scientists took fruit and seeds from the underground burrow of a long-dead Siberian squirrel and process to regenerate a beautiful flower called the Silene stenophylla. To date, it is the oldest plant to be produced from the innovative regeneration (26)____________  

  Understandably, experts are over the moon about their success as it shows once and for all that tissue can survive ice conservation for thousands of years. Those who participated in the regeneration of the flower are pleased and are now hoping to find prehistoric squirrel tissue or perhaps even (27) _____________ tissue from the great woolly mammoth, which could lead to the resurrection of those two species.

[From: STARLIGHT 8, Workbook, Express Publishing. 2010]

icy

freezing

iced

frozen

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

Where did Honda go when he left his village?

went to work at an auto repair shop in Tokyo

went to work as a motor racer

went to open repair shop

went to fix and ride motorcycles

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

Honda was very successful because he _____________

owned the only motorcycle maker

put his motorcycles in difficult races

had a good education

wasn’t afraid to take chances

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

 

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

Soichiro Honda _____________.

 

wasted his time working at an auto repair shop

manufactured cars and motorcycles all his life

was poor when hestarted out, but later became a success

a mechanic coming from a poor family

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

What was different about the new motorcycle that Honda designed?

It was a cheaper one

It was a bicycle with motor.

It was a lightweight one

It was the biggest one

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

Honda start the Honda Motor Company in _____________.

1984

1948

1950

1960

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

What happened to Honda’s race car in 1936?

It crashed.

It collapsed.

It was crushed.

It was injured.

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 28 to 34.

  Soichiro Honda was bom in 1906 in a small village in Japan. It was so small that it didn’t even have electricity. His family was poor. Soichiro had eight brothers and sisters. Sadly, five of them died when they were young because they did not have good medical care. When Soichiro was eight years old, he saw his first automobile. He was amazed by it. For the next 50 years, he loved machines on wheels. When he was 15 years old, Soichiro left his village to work at an auto repair shop in Tokyo. It was then that Honda discovered motorcycles. He spent all of his free time fixing and riding motorcycles. He returned to his village six years later to open his own garage. Soon he owned several shops and had over 50 employees.

  At the same time, he began to build and race motorcycles and cars. Honda loved to race, and he became one of Japan’s most competitive drivers. In 1936, his race car crashed while he was driving 100 miles per hour. Half of Honda’s face was crushed, and he had other serious injuries. It took him a year and a half to recover. After this, his family begged him to give up racing. He looked for a less dangerous job and finally decided to become a manufacturer.

  At first, he manufactured engine parts. The Japanese navy used a lot of his engine parts in World War II. In 1948, after the war, he started the Honda Motor Company. He started the company with only $3,300. He made his first machines from engine parts that the military did not need after the war. These machines were not real motorcycles; they were bicycles with motors. People bought them because they needed a reliable form of transportation. As Honda’s business grew, he began to make different types of motorcycles. By 1950, his motorcycles were selling all over Japan. But there were 50 other motorcycle makers in Japan at the time. In 1958, Honda designed a lightweight motorcycle called the Super Cub. It was a huge success and Honda made a lot of money. Two years later, Honda built the world’s biggest motorcycle factory in Japan.

  By the 1960s, the Super Cub was popular all over Asia. But Honda wanted the motorcycle to be popular all over the world. In Europe, he put his motorcycles in difficult races to show how good they were. In the United States, he tried a different method. He used a magazine ad with the words “You Meet the Nicest People on a Honda." It showed ordinary Americans such as students, businessmen, and older people all riding happily on the Honda Super Cub. The ad appeared in many popular magazines.

  Readers who had never ridden a motorcycle saw the ad. The ad showed that motorcycles were not just for crazy young people who wore black leather jackets. They were good for other people too. The company sold thousands of motorcycles to new riders. Honda then started to put the ads on television. This was also very successful. For example, he put an ad for his motorcycle on during the Academy Awards program. Millions of people watched that program, and on the next day, sales of the motorcycle went up tremendously. By 1968, Honda had sold 1 million motorcycles in the United States.

  In 1963, his company started to make cars. In 1972, it produced the Civic-, the next year, the Accord; and then in 1978, the Prelude. Soon, the company was one of the world’s biggest automobile makers. Honda was also famous for his business style. He believed that workers and bosses should have a close relationship. He also thought it was important to encourage workers to do their best.

  In 1973, Soichiro Honda retired as president of his company. He died in 1991. Honda was very important to Japan’s recent history. He and many other business leaders helped make Japan into a leading industrial nation.

Honda’s business was _____________.

small in the beginning only and then expanded

a huge success in the United States

selling motorcycles to young people

a huge success ffom the beginning

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Dr Solow believes that _____________.

very rare species can’t be saved

all very rare species should be saved

all species should be saved

only some species are worth saving

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Dr Solow’s work depended on _____________.

the premise that all cranes should be protected

previous biological research

the cost of preserving cranes

the premise that not all species are the same

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Three of the six species of endangered cranes _____________

were less interesting to admire than others

could be allowed to become extinct

were so rare they couldn’t be saved

shouldn’t be protected

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

 

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Dr Weitzman believes that if two species are equally important genetically we should protect _____________.

 

the one that is more attractive

them both

the less endangered one

the rarer one

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Endangered species of cranes can be saved by _____________

stopping hunters from killing them

protecting their habitats

encouraging them to mate with their cousins

keeping them in zoos or wildlife parks

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Most species are endangered because _____________.

biologists haven’t classified them

they are hunted or picked

we don’t care enough about them

the places they live in are being destroyed

Xem đáp án
41. Trắc nghiệm
1 điểmKhông giới hạn

 

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

Dr Weitzman’s ideas _____________.

 

confirm Dr Solow’s

contradict Dr Solow’s

disregard Dr Solow’s

take Dr Solow’s ideas one step further

Xem đáp án
42. Trắc nghiệm
1 điểmKhông giới hạn

Read the following passage and mark the letter A, B, C, or D on your answer sheet to indicate the correct answer to each of the questions from 35 to 42.

  The idea of preserving biological diversity gives most people a warm feeling inside. But what, exactly, is diversity? And which kind is most worth preserving? It may be anathema to save-the-lot environmentalists who hate setting such priorities, but academics are starting to cook up answers.

  Andrew Solow, a mathematician at the Woods Hole Oceanographic Institution, and his colleagues argue that in the eyes of conservation, all species should not be equal. Even more controversially, they suggest that preserving the rarest is not always the best approach. Their measure of diversity is the amount of evolutionary distance between species. They reckon that if choices must be made, then the number of times that cousins are removed from one another should be one of the criteria.

  This makes sense from both a practical and an aesthetic point of view. Close relatives have many genes in common. If those genes might be medically or agriculturally valuable, saving one is nearly as good as saving both. And different forms are more interesting to admire and study than lots of things that look the same. Dr Solow’s group illustrates its thesis with an example. Six species of crane are at some risk of extinction. Breeding in captivity might save them. But suppose there were only enough money to protect three. Which ones should be picked?

  The genetic distances between 14 species of cranes, including the six at risk, have already been established using a technique known as DNA hybridisation. The group estimated how likely it was that each of these 14 species would become extinct in the next 50 years. Unendangered species were assigned a 10% chance of meeting the Darwinian reaper-man; the most vulnerable, a 90% chance. Captive breeding was assumed to reduce an otherwise endangered species’ risk to the 10% level of the safest. Dr Solow’s computer permed all possible combinations of three from six and came to the conclusion that protecting the Siberian, white-naped and black-necked cranes gave the smallest likely loss of biological diversity over the next five decades. The other three had close relatives in little need of protection. Even if they became extinct, most of their genes would be saved.

  Building on the work of this group, Martin Weitzman, of Harvard University, argues that conservation policy needs to take account not only of some firm measure of the genetic relationships of species to each other and their likelihood of survival, but also the costs of preserving them. Where species are equally important in genetic terms, and - an important and improbable precondition - where the protection of one species can be assured at the expense of another, he argues for making safe species safer, rather than endangered species less endangered.

  In practice, it is difficult to choose between species. Most of those at risk - especially plants, the group most likely to yield useful medicines - are under threat because their habitats are in trouble, not because they are being shot, or plucked, to extinction. Nor can conservationists choose among the millions of species that theory predicts must exist, but that have not yet been classified by the biologists assigned to that tedious task.

  This is not necessarily cause for despair. At the moment, the usual way to save the genes in these creatures is to find the bits of the world with the largest number of species and try to protect them from the bulldozers. What economists require from biologists are more sophisticated ways to estimate the diversity of groups of organisms that happen to live together, as well as those which are related to each other. With clearer goals established, economic theory can then tell environmentalists where to go.

[from The Economist]

According to the writer what has to be done first is for _____________.

biologists to instruct economists

biologists to classify undiscovered species

developers to stop destroying habitats

economists to instruct biologists

Xem đáp án
43. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the sentence that is closest in meaning to each of the following questions.

You are in this mess right now because you didn’t listen to me in the first place.

If you listened to my advice in the first place, you wouldn’t be in this mess right now.

If you listen to my advice in the first place, you will not be in this mess right now.

If you had listened to my advice in the first place, you wouldn’t be in this mess right now.

If you had listened to my advice in the first place, you wouldn’t have been in this mess right now.

Xem đáp án
44. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the sentence that is closest in meaning to each of the following questions.

It was only when I left home that I realized how much my family meant to me.

As soon as I left home, I found out what a family could do without.

I left home and didn’t realize how meaningful my family was.

Not until I left home did I realize how much my family meant to me.

Before I left home, I realized how much my family meant to me.

Xem đáp án
45. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the sentence that is closest in meaning to each of the following questions.

Mike put a fence so that people didn’t walk on his garden.

Mike put a fence because he wants to remind people to walk on his garden.

Mike put a fence to prevent people from walking on his garden.

In order to tell people to walk on his garden, Mike put a fence.

So as to encourage people to walk on his garden, Mike put a fence.

Xem đáp án
46. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the underlined part that needs correction in each of the following questions.

(A) The assumption (B) that smoking has bad (C) effects on our health (D) have been proved.

The

that

effects on

have

Xem đáp án
47. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the underlined part that needs correction in each of the following questions.

The improvement (A) for water standards (B) over (C) the last 50 years has been (D) very great.

for water

over

the last

very great.

48. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the underlined part that needs correction in each of the following questions.

(A) Not until ten years (B) ago (C) was there much need for personal (D) computer.

Not until

ago

was there

computer

Xem đáp án
49. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the sentence that best combines each pair of sentences in the following questions.

My mother regretted not having planted a garden this year. She felt bad when buying vegetables at the supermarket.

If my mother had planted a garden this year, she wouldn’t have had to buy her vegetables from the supermarket.

When she realized that the vegetables at the supermarket were so bad, my mother decided to grow her own from then on.

Feeling sorry that she hadn’t planted a garden this year, my mother did not feel good about purchasing vegetables from the supermarket.

The garden that my mother had not planted, which she regretted not doing, would have produced better vegetables than the ones she got at the supermarket.

Xem đáp án
50. Trắc nghiệm
1 điểmKhông giới hạn

Mark the letter A, B, C, or D on your answer sheet to indicate the sentence that best combines each pair of sentences in the following questions.

My mother is on a business trip. We have a cooked dinner every evening.

Although my mother is on a business trip, we have a cooked dinner every evening.

We have a cooked dinner every evening, so my mother is on a business trip.

Because my mother is on a business trip, we have a cooked dinner every evening

When we have a cooked dinner every evening, my mother is on a business trip.

Xem đáp án
© All rights reserved VietJack