35 CÂU HỎI
Trong các câu dưới đây, câu nào là mệnh đề?
A. Có ai ở trong đó không?;
B. Bạn có thấy đói không?;
C. Đừng lại gần tôi!;
D. Số 25 không phải là số nguyên tố.
Cho tập hợp A = {2; 4; 6; 8}. Số tập con của tập hợp A là?
A. 15;
B. 16;
C. 17;
D. 18.
Cho tập hợp K = [1 ; 7) \ (– 3 ; 5). Khẳng định nào sau đây đúng ?
A. K = [1; 7);
B. K = (– 3; 7);
C. K = [1; 5);
D. K = [5; 7).
Miền nghiệm của bất phương trình x – y + 5 ≥ 0 được biểu diễn là miền màu xanh trong hình ảnh nào sau đây ?
A.
B.
C.
D.
Cặp số nào sau đây là nghiệm của hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x - 1 > 0\\x + 5y < 4\end{array} \right.\) ?
A. (3; 5);
B. (1; –1);
C. (2; 5);
D. (3; 4).
Chọn phương án SAI trong các phương án dưới đây?
A. sin 0° = 0;
B. cos 90° = 0;
C. cos 0° = 1;
D. sin 90° = 0.
Cho β là góc tù. Tìm khẳng định đúng trong các khẳng định dưới đây?
A. cos β > 0;
B. sin β > 0;
C. tan β > 0;
D. cot β > 0.
Cho góc α thỏa mãn \(\sin \alpha = \frac{{12}}{{13}}\) và 90° < α < 180°. Tính cosα.
A. \(\cos \alpha = \frac{2}{{13}}\);
B. \(\cos \alpha = \frac{5}{{13}}\);
C. \(\cos \alpha = - \frac{5}{{13}}\);
D. \(\cos \alpha = - \frac{2}{{13}}\).
Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.
A. \(2\sqrt 2 \);
B. \(2\sqrt 3 \);
C. \(2\sqrt 6 \);
D. 2\(\sqrt 5 \).
Cho hình bình hành ABCD có K là giao điểm hai đường chéo như hình vẽ.
Khẳng định nào sau đây là đúng ?
A. \(\overrightarrow {AK} \) và \(\overrightarrow {KC} \) cùng phương ngược hướng;
B. \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng phương cùng hướng;
C. \(\overrightarrow {KC} \) và \(\overrightarrow {KA} \) cùng phương ngược hướng;
D. \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng phương cùng hướng.
Cho hình bình hành ABCD có AB = 4 cm. Tính độ dài vectơ \(\overrightarrow {CD} \).
A. 1 cm;
B. 3 cm;
C. 4 cm;
D. 2 cm
Cho các điểm A, B, C phân biệt. Đẳng thức nào sau đây đúng ?
A. \(\overrightarrow {AB} = \overrightarrow {BC} + \overrightarrow {CA} \);
B. \(\overrightarrow {AB} = \overrightarrow {CB} + \overrightarrow {AC} \);
C. \(\overrightarrow {AB} = \overrightarrow {BC} + \overrightarrow {AC} \);
D. \(\overrightarrow {AB} = \overrightarrow {CA} + \overrightarrow {BC} \).
Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó:
A. \(\overrightarrow {AB} - \overrightarrow {AI} = \overrightarrow {BI} \);
B. \(\overrightarrow {AB} - \overrightarrow {DA} = \overrightarrow {BD} \);
C. \(\overrightarrow {AB} - \overrightarrow {DC} = \overrightarrow 0 \);
D. \(\overrightarrow {AB} - \overrightarrow {DB} = \overrightarrow 0 \).
Cho hình vuông ABCD cạnh 2a. Tính \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right|\).
A. \(a\sqrt 2 \);
B. a;
C. \(2a\sqrt 2 \);
D. 2a.
Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm của AB, CD, O là trung điểm của EF. Khẳng định nào sau đây là đúng ?
A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \);
B. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {AB} \);
C. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {AC} \);
D. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {BC} \).
Cho tam giác ABC. Đặt \(\overrightarrow {AB} = \overrightarrow a \), \(\overrightarrow {AC} = \overrightarrow b \). M thuộc cạnh AB sao cho AB = 3AM, N thuộc tia BC và CN = 2BC. Phân tích \(\overrightarrow {AN} \) qua các vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ta được biểu thức là:
A. \[2\overrightarrow a + 3\overrightarrow b \];
B. \[ - 2\overrightarrow a + 3\overrightarrow b \];
C. \[2\overrightarrow a - 3\overrightarrow b \];
D. \[2\overrightarrow a + \overrightarrow b \].
Cho các vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương và \(\overrightarrow x = \overrightarrow a - 3\overrightarrow b \), \(\overrightarrow y = 2\overrightarrow a + 6\overrightarrow b \) và \(\overrightarrow z = - 3\overrightarrow a + \overrightarrow b \). Khẳng định nào sau đây là đúng ?
A. \(\overrightarrow y \), \(\overrightarrow z \) cùng phương, ngược hướng;
B. \(\overrightarrow y \), \(\overrightarrow z \) cùng phương, cùng hướng;
C. \(\overrightarrow y \), \(\overrightarrow x \) cùng phương, ngược hướng;
D. \(\overrightarrow y \), \(\overrightarrow x \) cùng phương, cùng hướng.
Cho tam giác ABC có điểm I nằm trên cạnh AC sao cho \(\overrightarrow {BI} = \frac{3}{4}\overrightarrow {AC} - \overrightarrow {AB} \), J là điểm thỏa mãn \(\overrightarrow {BJ} = \frac{1}{2}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} \). Ba điểm nào sau đây thẳng hàng ?
A. I, J, C;
B. I, J, B;
C. I, A, B;
D. I, G, B.
Cho tam giác ABC vuông tại A có: AB = 4, BC = 8. Tính \(\left( {\overrightarrow {CB} ,\overrightarrow {CA} } \right)\).
A. 90°;
B. 60°;
C. 30°;
D. 45°.
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) đều khác \(\overrightarrow 0 \). Biết: \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 30^\circ \), \(\overrightarrow a .\overrightarrow b = \sqrt 3 \)và \(\left| {\overrightarrow b } \right| = 2\). Tính độ dài của vectơ \(\overrightarrow a \).
A. 1;
B. 2;
C. \(\frac{1}{2}\);
D. \(\frac{1}{4}\).
Cho tam giác ABC đều cạnh a. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).
A. a;
B. 0;
C. a2;
D. \(\frac{1}{2}{a^2}\).
Cho hình thang ABCD với hai đáy là AB, CD có: \(\left( {\overrightarrow {AB} - \overrightarrow {AD} } \right).\overrightarrow {AC} = 0\). Khẳng định nào sau đây là đúng ?
A. BD vuông góc với AC;
B. AB vuông góc với AC;
C. AB vuông góc với DC;
D. BD vuông góc với DC.
Cho giá trị gần đúng của \(\frac{6}{{17}}\) là 0,35. Sai số tuyệt đối của số gần đúng 0,35 là:
A. 0,003;
B. 0,03;
C. 0,0029;
D. 0,02.
Hãy viết số quy tròn của số gần đúng a = 15,318 biết \(\overline a \) = 15,318 ± 0,05.
A. 15,3;
B. 15,31;
C. 15,32;
D. 15,4.
Số lượng khách từ ngày thứ nhất đến ngày thứ 10 của một nhà hàng mới mở được thống kê ở bảng sau:
Ngày |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Số khách |
11 |
9 |
7 |
5 |
15 |
20 |
9 |
6 |
17 |
13 |
Tính số khách trung bình từ bảng số liệu trên.
A. 9,2;
B. 10,2;
C. 11,2;
D. 12,2.
Tìm trung vị của mẫu số liệu sau:
1; 0; 5; 10; 2; 3; 9.
A. 3;
B. 5;
C. 0;
D. 2.
Cho mẫu số liệu sau:
1; 9; 12; 10; 2; 9; 15; 11; 20; 17.
Tứ phân vị Q1, Q2, Q3 của mẫu số liệu trên lần lượt là:
A. 9; 11; 15;
B. 2; 10,5; 15;
C. 10; 12,5; 15;
D. 9; 10,5; 15.
Cho mẫu số liệu sau:
2; 5; 9; 12; 15; 5; 20.
Tìm mốt của mẫu số liệu trên.
A. 5;
B. 9;
C. 12;
D. 20.
Cho mẫu số liệu sau:
15; 26; 5; 2; 9; 5; 28; 30; 2; 26.
Tính khoảng biến thiên của mẫu số liệu trên.
A.26;
B. 28;
C. 30;
D. 32.
Cho mẫu số liệu sau:
2; 9; 12; 16; 3; 5; 12; 33; 24; 27.
Tính khoảng tứ phân vị của mẫu số liệu trên.
A. 17;
B. 18;
C. 19;
D. 20.
Cho mẫu số liệu sau:
12; 2; 6; 13; 9; 21.
Tìm phương sai của mẫu số liệu trên (làm tròn đến hàng phần trăm).
A. 35,85;
B. 34,85;
C. 34,58;
D. 35,58.
Cho mẫu số liệu sau:
24; 16; 12; 5; 9; 3.
Tìm độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần trăm).
A. 7,04;
B. 8,04;
C. 7,55;
D. 8,55.
Trong mặt phẳng tọa độ Oxy, cho điểm A(1; 2) và B(3; – 1). Độ dài vectơ \(\overrightarrow {AB} \) là:
A. 5;
B. 3;
C. \(\sqrt {13} \);
D. \(\sqrt {15} \).
Trong mặt phẳng tọa độ, cho \(\overrightarrow u = 3\overrightarrow i - 5\overrightarrow j \). Khi đó tọa độ của vectơ \(\overrightarrow u \) là
A. \(\overrightarrow u = \left( {3;\,\,5} \right)\);
B. \(\overrightarrow u = \left( {3;\,\, - 5} \right)\);
C. \(\overrightarrow u = \left( { - 3;\,\,5} \right)\);
D. \(\overrightarrow u = \left( { - 3;\,\, - 5} \right)\).
Góc giữa vectơ \(\overrightarrow a = \left( {1; - 1} \right)\) và vectơ \(\overrightarrow b = \left( { - 2;0} \right)\) có số đo bằng:
A. 90°;
B. 0°;
C. 135°;
D. 45°.