2048.vn

Đề kiểm tra Toán 12 Kết nối tri thức Chương 4 có đáp án - Đề 2
Quiz

Đề kiểm tra Toán 12 Kết nối tri thức Chương 4 có đáp án - Đề 2

A
Admin
ToánLớp 127 lượt thi
11 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Tìm nguyên hàm của hàm số \(f\left( x \right) = 2025\sin x\).

\(\int {2025\sin x\,{\rm{d}}x} = \sin 2025x + C\).

\(\int {2025\sin x\,{\rm{d}}x} = {\sin ^{2025}}x + C\).

\(\int {2025\sin x\,{\rm{d}}x} = - 2025\cos x + C\).

\(\int {2025\sin x\,{\rm{d}}x} = 2025\cos x + C\).

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Nguyên hàm \(F\left( x \right)\)của hàm số \(f\left( x \right) = {e^x} + 2\sin x\) thỏa mãn \(F\left( 0 \right) = 20\) là:

\(F\left( x \right) = - {e^x} - 2\cos x + 23\).

\(F\left( x \right) = {e^x} - 2\cos x + 21\).

\(F\left( x \right) = {e^x} + 2\cos x + 17\).

\(F\left( x \right) = {e^x} + 2\sin x + 19\).

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Biết \(\int\limits_0^1 {f\left( x \right){\rm{d}}x = 3} \)\(\int\limits_0^1 {g\left( x \right){\rm{d}}x = - 2} \). Khi đó \[\int\limits_0^1 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} \] bằng

\(1.\)

\(5.\)

\( - 1\).

\( - 6.\)

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình phẳng \(\left( H \right)\)giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x\], trục hoành và hai đường thẳng \[x = 1\]\[x = 3\]. Khối tròn xoay được tạo thành khi quay hình phẳng \(\left( H \right)\) quanh trục \[Ox\] có thể tích là

\(V = \frac{{406}}{{15}}\).

\(V = \frac{{406}}{{15}}\pi \).

\(V = \frac{{22}}{3}\pi \).

\(V = \frac{{512}}{{15}}\pi \).

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ {0;2} \right]\), \(f\left( 0 \right) = 1\)\(\int\limits_0^2 {f'\left( x \right){\rm{d}}x = - 3} \).Tính \(f\left( 2 \right).\)

\(f\left( 2 \right) = - 4\).

\(f\left( 2 \right) = - 2\).

\(f\left( 2 \right) = 4\).

\(f\left( 2 \right) = - 3\).

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành, trục tung và đường thẳng \(x = a\), \(a > 0\)(phần tô đậm trong hình vẽ) được tính theo công thức

Chọn A  Diện tích hình phẳng: \[S = \int\limits_0^a {\left| {f (ảnh 1)

\(S = \int\limits_0^c {f\left( x \right){\rm{d}}x} - \int\limits_a^c {f\left( x \right){\rm{d}}x} \).

\(S = - \int\limits_0^a {f\left( x \right){\rm{d}}x} \).

\(S = - \int\limits_0^c {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} \).

\(S = \int\limits_0^c {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} \).

Xem đáp án
7. Tự luận
1 điểmKhông giới hạn

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một xe ô tô đang chạy với tốc độ \[65\,{\rm{km/h}}\]thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \[50\,{\rm{m}}\]. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \[v\left( t \right) = - 10t + 20\,\left( {{\rm{m/s}}} \right)\], trong đó \[t\] là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \[S\left( t \right)\] là quãng đường ô tô đi được trong \[t\] (giây) kể từ lúc đạp phanh.

a) Quãng đường \[S\left( t \right)\] mà xe ô tô đi được trong thời gian \[t\] (giây) là một nguyên hàm của hàm số \[v\left( t \right)\].

b)\[S\left( t \right) = - 5{t^2} + 20t\].

c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây.

d) Xe ô tô đó không va chạm vào chướng ngại vật trên đường.

Xem đáp án
8. Tự luận
1 điểmKhông giới hạn

Một bể chứa dầu ban đầu có \(50000\) lít dầu. Gọi \(V\left( t \right)\) là thể tích dầu (lít) trong bể tại thời điểm \(t\), trong đó \(t\) tính theo giờ \(0 \le t \le 24\). Trong quá trình bơm dầu vào bể, thể tích dầu tăng theo tốc độ được biểu diễn bởi hàm số \(V'\left( t \right) = k.\sqrt t \), với \(k\) là hằng số dương. Sau 4 giờ bơm liên tục, thể tích dầu trong bể đạt \(58000\) lít.

a) Hàm số \(V\left( t \right)\) là một nguyên hàm của hàm số \(f\left( t \right) = k.\sqrt t \).

b) \(V\left( t \right) = \frac{{2k}}{3}.t\sqrt t  + C\), với \(0 \le t \le 24\) và \(k,\,\,C\) là các hằng số.

c) Sau 16 giờ bơm liên tục, thể tích dầu trong bể đạt được \(148000\) lít.

d) Trong quá trình bơm dầu, nếu sau mỗi giờ lượng dầu bị rò rỉ đều đặn với tốc độ \(500\) lít/giờ, thì tại thời điểm \(t\) bằng 9 giờ, thể tích dầu trong bể là \(72.500\) lít.

Xem đáp án
9. Tự luận
1 điểmKhông giới hạn

Phần 3. Trắc nghiệm trả lời ngắn

Hai công ty, công ty A và công ty B, cùng ra mắt sản phẩm cạnh tranh thị trường mới vào cùng thời điểm. Thị phần được đo bằng số lượng khách hàng lũy kế.

Công ty A: Bắt đầu với 0 khách hàng. Trong giai đoạn đầu, chiến dịch marketing hiệu quả giúp tốc độ thu hút khách hàng mới của họ tăng dần theo thời gian, được mô tả bởi hàm \(f\left( t \right) = 2t + 7\) (nghìn khách hàng/tháng), với \(t\) là số tháng kể từ khi ra mắt.

Công ty B: Nhờ có uy tín từ trước, họ bắt đầu với 10 nghìn khách hàng đặt trước sản phẩm. Sau đó, họ duy trì một tốc độ thu hút khách hàng mới ổn định là 10 nghìn khách hàng/tháng.

Hỏi sau khoảng bao nhiêu tháng kể từ khi ra mắt, tổng số lượng khách hàng lũy kế của công ty A bằng tổng số lượng khách hàng lũy kế của công ty B (tính cả 10 nghìn khách hàng ban đầu)?

Xem đáp án
10. Tự luận
1 điểmKhông giới hạn

Một hoa văn hình tròn tâm O, ngoại tiếp tam giác đều ABC có cạnh \[AB = 2\sqrt 3 \,{\rm{cm}}.\] Đường cong qua ba điểm A,B,C là một phần của parabol (xem hình vẽ).Một hoa văn hình tròn tâm O, ngoại tiếp tam giác đều ABC có cạnh \[AB = 2\sqrt 3 \,{\rm{cm}}.\] Đường cong qua ba điểm A,B,C là một phần của parabol (xem hình vẽ). (ảnh 1)
Tính diện tích của phần hình phẳng giới hạn bởi đường tròn và parabol (phần không gạch) theo đơn vị cm2 (kết quả làm tròn đến chữ số thập phân thứ hai).

Xem đáp án
11. Tự luận
1 điểmKhông giới hạn

Một kiến trúc sư chịu trách nhiệm thiết kế một tòa nhà cao 30 mét. Mặt cắt ngang tại mọi độ cao, vuông góc với trục thẳng đứng, luôn là một hình vuông (xem hình vẽ).

Một kiến trúc sư chịu trách nhiệm thiết kế một tòa nhà cao 30 mét. Mặt cắt ngang tại mọi độ cao, vuông góc với trục thẳng đứng, luôn là một hình vuông (xem hình vẽ). (ảnh 1)

Mặt đáy tòa nhà là hình vuông có cạnh \({L_0} = 26\;{\rm{m,}}\) mặt đỉnh là hình vuông có cạnh \({L_{30}} = 20\;{\rm{m}}{\rm{.}}\)Mặt cắt ngang tại vị trí hẹp nhất của tòa nhà: Hình vuông có cạnh \({L_{min}} = 13,75\;{\rm{m}}{\rm{.}}\) Mặt cắt của tòa nhà theo mặt phẳng đứng chứa đường chéo đáy có dạng là hình phẳng giới hạn bởi hai đường cong parabol đối xứng nhau qua trục thẳng đứng đi qua tâm đáy của tòa nhà. Tính thể tích của tòa nhà đó (làm tròn đến hàng đơn vị, đơn vị tính: mét khối).

Xem đáp án
© All rights reserved VietJack