Đề kiểm tra Toán 12 Kết nối tri thức Chương 4 có đáp án - Đề 1
11 câu hỏi
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số\[f\left( x \right) = {e^x} + 2x\]. Khẳng định nào dưới đây đúng?
\[f\left( x \right) = {e^x} + 2x\].
\[\int {f\left( x \right){\rm{d}}x} = {e^x} + 2{x^2} + C\].
\[\int {f\left( x \right){\rm{d}}x} = {e^x} - {x^2} + C\].
\[\int {f\left( x \right){\rm{d}}x} = {e^x} + {x^2} + C\].
Cho \[\int\limits_1^2 {f(x){\rm{d}}x = 3} \], \[\int\limits_1^2 {g(x){\rm{d}}x = 2} \]. Giá trị \[\int\limits_1^2 {\left[ {f(x) + g(x)} \right]{\rm{d}}x} \] bằng
\( - 1\).
\(6\).
\(1\).
\(5\).
Trên khoảng \(\left( { - \infty ; + \infty } \right)\), hàm số \[F\left( x \right) = \frac{1}{2}\sin 2x\] là một nguyên hàm của hàm số nào dưới đây?
\({f_3}\left( x \right) = - \frac{1}{2}\cos 2x\).
\({f_4}\left( x \right) = - \frac{1}{4}\cos 2x\).
\({f_2}\left( x \right) = \cos 2x\).
\({f_1}\left( x \right) = - \cos 2x\).
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là \(x(0 \le x \le 3)\) ta được mặt cắt là một hình vuông có cạnh là \(\sqrt {9 - {x^2}} \) (được mô hình hóa bởi hình vẽ bên dưới).
Thể tích của vật thể đó bằng
\(171\pi \).
\(18\pi \).
\(18\).
\(171\)
Hàm số \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = 3{x^2}\) và \(F\left( 0 \right) = 5\). Khi đó, hàm số \(F\left( x \right)\) là
\(F\left( x \right) = 3{x^3} + 5\).
\(F\left( x \right) = {x^3} - 5\).
\(F\left( x \right) = {x^3} + 5\).
\(F\left( x \right) = 6x + 5\).
Diện tích hình phẳng giới hạn bởi đồ thị của các hàm số \(y = \sin x,\;y = \cos x\) và các đường thẳng \(x = 0,\;x = 7\)được tính bằng công thức
\(S = \int\limits_0^7 {( - \sin x + {\rm{cos}}x){\rm{d}}x} \).
\[S = \int\limits_0^7 {\left| {{\rm{sin}}x - {\rm{cos}}x} \right|} {\rm{d}}x\].
\[S = \int\limits_0^7 {({\rm{sin}}x - {\rm{cos}}x){\rm{d}}x} \].
\[S = \int\limits_0^7 {({\rm{sin}}x + {\rm{cos}}x){\rm{d}}x} \].
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong dây chuyền sản xuất sữa chua hiện đại của một nhà máy thực phẩm, từng giọt sữa chua âm thầm chuyển mình dưới tác động của hàng triệu vi khuẩn Lactic, những “nghệ nhân tí hon” kiến tạo vị chua thanh đặc trưng. Mật độ vi khuẩn (số triệu tế bào trên mỗi ml sữa chua) tại thời điểm \(t\) (giờ) được kí hiệu là \(N\left( t \right)\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml. Do sự thay đổi về nguồn dinh dưỡng (đường lactose giảm) và độ pH (axit lactic tăng) nên tốc độ thay đổi mật độ vi khuẩn \(N'\left( t \right)\) (đơn vị: triệu tế bào/ ml mỗi giờ) được mô hình hóa bởi công thức \(N'\left( t \right) = 18t - 3{t^2}\) (triệu tế bào/ml mỗi giờ) với \(t\) là thời gian tính bằng giờ (\(0 \le t \le 7\)).
a)\(N'\left( 1 \right) = 15\) triệu tế bào/ml giờ.
b)\(\int {N'\left( t \right){\rm{d}}t} = 9{t^2} - {t^3}\).
c) So với lúc ban đầu (\(t = 0\)), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml khi đến thời điểm \(t = 6\) giờ.
d) Tại thời điểm \(t = 7\) giờ, mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.
Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc \(0\,\,\left( {{\rm{m/s}}} \right)\) đến \(10\,\,\left( {{\rm{m/s}}} \right)\) trong thời gian chưa biết \({t_1}\) giây theo hàm số vận tốc \({v_1}\left( t \right) = at\) (\(a\) gọi là gia tốc trong giai đoạn này, \(a\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Sau đó, robot tiếp tục di chuyển với vận tốc không đổi trong 40 giây. Cuối cùng, robot giảm tốc đều từ \(10\,\,\left( {{\rm{m/s}}} \right)\) và dừng lại đúng tại băng chuyền điểm \(B\) với thời gian \({t_2}\) giây theo hàm vận tốc \({v_2}\left( t \right) = 10 - bt\)(\(b\)gọi là gia tốc trong giai đoạn này, \(b\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Toàn bộ quá trình vận chuyển diễn ra trong tổng thời gian là 70 giây.

a) Nếu gia tốc \(a = 0,5\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian tăng tốc \({t_1}\) bé hơn \(21\) giây.
b) Nếu gia tốc \(b = 0,8\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian giảm tốc \({t_2}\) lớn hơn \(13\) giây.
c) \(a + b \le \,\frac{5}{4}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).
d) Tổng quãng đường mà robot đã di chuyển từ \(A\) đến \(B\) là \(550\,{\rm{m}}\).
Phần 3. Trắc nghiệm trả lời ngắn
Một xe mô tô đang chạy với vận tốc \[20\] m/s thì tài xế giảm ga và kéo phanh. Từ thời điểm đó, xe chuyển động chậm dần đều với vận tốc được mô tả bởi phương trình: \(v\left( t \right) = - 4t + 20\) (m/s), trong đó thời gian \[t\] được tính bằng giây. Hỏi từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường bao nhiêu mét?
Một cái cổng hình Parabol như hình vẽ sau:

Chiều cao \(GH = 4\,{\rm{m}}\), chiều rộng \(AB = 4\,{\rm{m}}\), \(AC = BD = 0,9\,{\rm{m}}\). Chủ nhà làm hai cánh cổng nhựa lõi thép UPVC, khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1\,500\,000\) đồng/m2, còn các phần để trắng làm xiên hoa có giá là \(1\,000\,000\) đồng/m2. Tổng số tiền để làm hai phần nói trên là bao nhiêu triệu đồng? (kết quả làm tròn đến hàng phần chục).
Một chiếc đồng hồ cát như hình vẽ gồm hai phần đối xứng nhau qua mặt phẳng nằm ngang và đặt trong một hình trụ. Thiết diện thẳng đứng qua trục của nó là hai parabol chung đỉnh và đối xứng nhau qua mặt phẳng nằm ngang. Ban đầu lượng cát dồn hết ở phần trên của đồng hồ thì chiều cao của mực cát bằng \(\frac{2}{3}\) chiều cao của bên đó (xem hình vẽ). Cát chảy từ trên xuống dưới với tốc độ \(v\left( t \right) = 0,2t + 13\,\) (cm3/phút). Khi chiều cao của cát còn 4cm thì bề mặt trên cùng của cát tạo thành một đường tròn có chu vi bằng \(8\pi \)cm. Biết sau 20 phút thì cát chảy hết xuống phần bên dưới của đồng hồ. Hỏi chiều cao của khối trụ bên ngoài bằng bao nhiêu centimet? (Nếu kết quả là số thập phân thì làm tròn đến hàng đơn vị).


