Đề kiểm tra Toán 12 Chân trời sáng tạo Chương 6 có đáp án - Đề 2
11 câu hỏi
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hai biến cố \[A\] và \[B\], với \[P\left( B \right) = 0,8\], \[P\left( {AB} \right) = 0,4\]. Tính \[P\left( {A|B} \right)\].
\(\frac{1}{2}\).
\(\frac{1}{4}\).
\(\frac{1}{8}\).
\(2\).
Cho hai biến cố \(A,\,B\)với \(P\left( B \right) = 0,8;P\left( {A|B} \right) = 0,5\). Tính \[P\left( {AB} \right)\].
\(\frac{3}{7}\).
\(0,4\).
\(0,8\).
\(0,5\).
Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó.
Xét các biến cố:
A: “Tổng số chấm trên hai xúc xắc bằng 7”;
B: “Xúc xắc thứ nhất xuất hiện mặt 1 chấm”.
Tính \(P\left( {\left. {A\,} \right|B} \right)\).
\(6\).
\(36\).
\(\frac{1}{{36}}\).
\(\frac{1}{6}\).
Cho hai biến cố \(A\) và \(B\) với \(P\left( B \right) = 0,8\), \(P\left( {A|B} \right) = 0,7\), \(P\left( {A|\overline B } \right) = 0,45\). Tính \(P\left( A \right)\).
\(0,25\).
\(0,65\).
\(0,55\).
\(0,5\).
Giả sử \(A\) và \(B\) là hai biến cố ngẫu nhiên thỏa mãn \(P\left( A \right) > 0\) và \[0 < P\left( B \right) < 1\]. Khẳng định nào sau đây đúng?
\(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
Cho hai biến cố \[A\] và \[B\], với \[P\left( A \right) = 0,2\], \[P\left( B \right) = 0,26\], \[P\left( {B|A} \right) = 0,7\]. Tính \[P\left( {A|B} \right)\].
\(\frac{7}{{13}}\).
\(\frac{6}{{13}}\).
\(\frac{4}{{13}}\).
\(\frac{9}{{13}}\).
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Một nhà máy có hai phân xưởng cùng sản xuất một loại sản phẩm. Phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\)c số sản phẩm của cả nhà máy. Tỉ lệ phế phẩm của từng phân xưởng lần lượt là \(16{\rm{\% }}\) và \(20{\rm{\% }}\). Lấy ngẫu nhiên một sản phẩm trong kho hàng của nhà máy.
a) Xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.
b) Xác suất để lấy được phế phẩm bằng 0,176.
c) Giả sử đã lấy được phế phẩm, xác suất phế phẩm đó do phân xưởng thứ nhất sản xuất bằng 0,55 (kết quả làm tròn đến hàng phần trăm).
d) Nếu lấy được sản phẩm tốt, khả năng sản phẩm đó do phân xưởng thứ hai sản xuất là cao hơn khả năng sản phẩm đó do phân xưởng thứ nhất sản xuất.
Phần 3. Trắc nghiệm trả lời ngắn
Trong một kì thi học sinh giỏi cấp tỉnh dành cho học sinh trung học phổ thông của một khu vực (các học sinh của cả ba khối cùng tham gia giải một đề thi), ban tổ chức thống kê kết quả thi và thu được kết quả như sau:
- Trong 500 học sinh tham gia cuộc thi, có \(60{\rm{\% }}\) học sinh đạt huy chương, trong đó có 15 học sinh đạt huy chương vàng, 80 học sinh đạt huy chương bạc, còn lại là huy chương đồng.
- Trong số 300 học sinh lớp 12 có 6 học sinh đạt huy chương vàng, 24 học sinh đạt huy chương bạc. Số học sinh đạt huy chương đồng lớp 12 chiếm \(9{\rm{\% }}\) tổng số học sinh dự thi.
Chọn ngẫu nhiên một em học sinh. Nếu biết học sinh được chọn là học sinh lớp 12 đạt huy chương thì xác suất để học sinh được chọn đạt huy chương đồng là a%. Tìm a. (Kết quả làm tròn đến hàng đơn vị).
Có ba đồng xu được đựng trong một hộp kín. Đồng xu thứ nhất là một đồng xu cân đối với tỷ lệ mặt ngửa và mặt sấp bằng nhau. Đồng xu thứ hai là một đồng xu bị lỗi có khả năng mặt ngửa xuất hiện là 70%. Đồng xu thứ ba là một đồng xu hai mặt ngửa (khi tung luôn ra mặt ngửa). Bạn An lấy ngẫu nhiên một đồng xu từ hộp và tung nó hai lần. Kết quả của hai lần tung cho thấy xuất hiện một lần mặt sấp và một lần mặt ngửa. Tính xác suất để đồng xu bạn đã chọn là đồng xu thứ hai (đồng xu bị lỗi) (Kết quả làm tròn đến hàng phần trăm).
Một cơ quan hành chính nhà nước thực hiện việc tinh giản biên chế thông qua phỏng vấn. Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \]. Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \]. Chọn một nhân viên bất kỳ đã bị tinh giản thì hãy tính xác suất để người này có trình độ đại học (kết quả là một số thập phân nhỏ hơn 1 đã làm tròn đến hàng phần trăm).


