Dạng 2: Sử dụng tính chất đường chéo của hình đặc biệt (vd: hình bình hành) có đáp án
9 câu hỏi
Cho có trực tâm H nội tiếp (O) đường kính CM, gọi I là trung điểm của AB. Chứng minh rằng H, I, M thẳng hàng.
Cho nửa đường tròn đường kính AB trên đó có một điểm M. Trên đường kinh AB lấy một điểm C sao cho . Trên nửa mặt phằng bờ AB có chứa điểm M, người ta kẻ các tia Ax, By vuông góc với AB; đường thẳng qua M vuông góc với MC cắt Ax tại P; đường thẳng qua C vuông góc với CP cắt By tại Q. Gọi D là giao điểm của CP và AM; E là giao điểm của CQ và BM
a) Chứng minh rằng các tứ giác ACMP, CDME nội tiếp được
b) Chứng minh rằng hai đường thẳng AB, DE song song
c) Chứng minh rằng ba điểm P,M, Q thẳng hàng
d) Ngoài điểm M ra, các đường tròn ngoại tiếp các tam giác DMP, EMQ còn điểm chung nào nữa không? Vì sao?
Cho đường tròn (O) đường kính AB=2R và một điểm C trên đường tròn (C không trùng với A và B. Trên nửa mặt phẳng bờ AB có chứa điểm C, kẻ tia Ax tiếp xúc với đường tròn (O). Gọi M là điểm chính giữa cung nhỏ AC; P là giao điểm của AC, BM. Tia BC cắt các tia AM, Ax lần lượt tại N và Q
a) Chứng minh tam giác ABN cân
b) Tứ giác APNQ là hình gì? Vì sao?
c) Gọi K là điểm chính giữa của cung AB không chứa C. Hỏi có thể xảy ra ba điểm Q, M, K thẳng hàng không? Vì sao?
d) Xác định vị trí của điểm C để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với đường tròn (O).



