2048.vn

Chủ đề 2: Tam giác đồng dạng có đáp án
Quiz

Chủ đề 2: Tam giác đồng dạng có đáp án

A
Admin
ToánLớp 98 lượt thi
48 câu hỏi
1. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có \[AB = 6cm,\,AC = 9cm,\,BC = 12cm\]\[\Delta MNP\]\[MN = 24cm,\,NP = 18cm,\,MP = 12cm\].

Chứng minh \[\Delta ABC \sim \Delta MNP\].

Xem đáp án
2. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có \[AB = 6cm,\,AC = 9cm,\,BC = 12cm\]\[\Delta MNP\]\[MN = 24cm,\,NP = 18cm,\,MP = 12cm\].

Tính tỉ số diện tích của hai tam giác trên.

Xem đáp án
3. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A, đường cao AH. Biết \[AB = 4cm,\,AC = 3cm\].

Chứng minh \[\Delta HAC\sim\Delta ABC\].

Xem đáp án
4. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A, đường cao AH. Biết \[AB = 4cm,\,AC = 3cm\].

Tính độ dài CH.

Xem đáp án
5. Tự luận
1 điểmKhông giới hạn

Cho hình thang ABCD \[(AB\parallel CD)\]\[\widehat {DAB} = \widehat {DBC}\]\[AD = 5cm,\,AB = 3cm,\,BC = 9cm\].

Chứng minh \[\Delta DAB\sim\Delta CBD\].

Xem đáp án
6. Tự luận
1 điểmKhông giới hạn

Cho hình thang ABCD \[(AB\parallel CD)\]\[\widehat {DAB} = \widehat {DBC}\]\[AD = 5cm,\,AB = 3cm,\,BC = 9cm\]

Từ câu a, tính độ dài DB, DC.

Xem đáp án
7. Tự luận
1 điểmKhông giới hạn

Cho hình thang ABCD \[(AB\parallel CD)\]\[\widehat {DAB} = \widehat {DBC}\]\[AD = 5cm,\,AB = 3cm,\,BC = 9cm\]

Tính diện tích hình thang ABCD, biết diện tích tam giác ABD bằng 5cm2

Xem đáp án
8. Tự luận
1 điểmKhông giới hạn

Cho \[DE\parallel BC\], D là một điểm trên cạnh AB, E là một điểm trên cạnh AC sao cho \[DE\parallel BC\]. Xác định vị trí của điểm D sao cho chu vi tam giác ADE bằng \[\frac{2}{5}\] chu vi tam giác ABC. Tính chu vi của hai tam giác đó, biết tổng 2 chu vi bằng 63cm.

Xem đáp án
9. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A. Đường phân giác của góc A cắt cạnh huyền BC tại D. Qua D kẻ đường thẳng vuông góc với BC và cắt AC tại E.

Chứng minh \(\Delta DEC \sim \Delta ABC\)

Xem đáp án
10. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A. Đường phân giác của góc A cắt cạnh huyền BC tại D. Qua D kẻ đường thẳng vuông góc với BC và cắt AC tại E.

Chứng minh \(DE = DB\)

Xem đáp án
11. Tự luận
1 điểmKhông giới hạn

Cho tam giác \(\Delta ABC\)\(AB = 9cm,\,\,AC = 6cm\). Điểm D nằm trên cạnh AB sao cho \(AD = 2cm\). Gọi E là trung điểm của AC. Chứng minh \(\Delta AED\sim\Delta ABC\)

Xem đáp án
12. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.

Chứng minh rằng: \(\Delta AHB\sim\Delta CAB\). Từ đó suy ra \(A{B^2} = HB.BC\)

Xem đáp án
13. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.

Kẻ \(HM \bot AB\)\(HN \bot AC\). Chứng minh \(AM.AB = AN.AC\)

Xem đáp án
14. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.

Chứng minh \(\Delta AMN\sim\Delta ACB\)

Xem đáp án
15. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]

Chứng minh rằng \[\Delta BDM\sim\Delta CME\]

Xem đáp án
16. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]

Chứng minh rằng \[\Delta MDE\sim\Delta DBM\]

Xem đáp án
17. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]

Chứng minh rằng không đổi

Xem đáp án
18. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có \[AB = 18cm,\,AC = 24cm,\,BC = 30cm\]. Gọi M là trung điểm của BC. Qua M kẻ đường vuông góc với BC cắt AB, AC lần lượt ở D, E.

Chứng minh rằng: \[\Delta ABC\sim\Delta MDC\]

Xem đáp án
19. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có \[AB = 18cm,\,AC = 24cm,\,BC = 30cm\]. Gọi M là trung điểm của BC. Qua M kẻ đường vuông góc với BC cắt AB, AC lần lượt ở D, E.

Tính độ dài các cạnh \[\Delta MDC\]

Xem đáp án
20. Tự luận
1 điểmKhông giới hạn

Cho tứ giác ABCD có diện tích 36 cm2, trong đó diện tích \[\Delta ABC\] là 11 cm2222222331xcc 2. Qua điểm B kẻ đường thẳng song song với AC cắt AD ở M, cắt CD ở N. Tính diện tích \[\Delta MND\].

Xem đáp án
21. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn, đường cao AH \[(H \in BC)\]. Kẻ  tại D, \[HE \bot AC\] tại E.

Chứng minh \[\Delta AHB\sim\Delta ADH,\,\,\Delta AHC\sim\Delta AEH\]

Xem đáp án
22. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn, đường cao AH \[(H \in BC)\]. Kẻ  tại D, \[HE \bot AC\] tại E.

Chứng minh \[AE.AC = AD.AB\]

Xem đáp án
23. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC, AD là tia phân giác của góc A; \[AB < AC\]. Trên tia đối của tia DA lấy điểm I sao cho \[\widehat {ACI} = \widehat {BDA}\]. Chứng minh rằng

\[\Delta ADB\~\Delta ACI;\,\,\Delta ADB\sim\Delta CDI\]

Xem đáp án
24. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC, AD là tia phân giác của góc A; \[AB < AC\]. Trên tia đối của tia DA lấy điểm I sao cho \[\widehat {ACI} = \widehat {BDA}\]. Chứng minh rằng

\[A{D^2} = AB.AC - BD.CD\]

Xem đáp án
25. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[AE.AC = AF.AB\]

Xem đáp án
26. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[\Delta AFE\sim\Delta ACB\]

Xem đáp án
27. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[\Delta FHE\sim\Delta BHC\]

Xem đáp án
28. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[HA.HD = HB.HE = HC.HF\]

Xem đáp án
29. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

Chứng minh rằng \[B{C^2} = BH.BE + CH.CF\]

Xem đáp án
30. Tự luận
1 điểmKhông giới hạn

Cho hình bình hành ABCD, trên tia đối của tia DA lấy điểm M sao cho \[DM = AB\], trên tia đối của tia BA lấy điểm N sao cho \[BN = AD\]. Chứng minh:

\[\Delta CBN\]\[\Delta CDM\] cân

Xem đáp án
31. Tự luận
1 điểmKhông giới hạn

Cho hình bình hành ABCD, trên tia đối của tia DA lấy điểm M sao cho \[DM = AB\], trên tia đối của tia BA lấy điểm N sao cho \[BN = AD\]. Chứng minh:

\[\Delta CBN\sim\Delta MDC\]

Xem đáp án
32. Tự luận
1 điểmKhông giới hạn

Cho hình thoi ABCD có \[\widehat A = 60^\circ \]. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và cắt đường thẳng AD tại F.

Chứng minh \[\Delta BEC\sim\Delta AEF\]

Xem đáp án
33. Tự luận
1 điểmKhông giới hạn

Cho hình thoi ABCD có \[\widehat A = 60^\circ \]. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và cắt đường thẳng AD tại F.

Chứng minh \[\Delta DCF\sim\Delta AEF\]

Xem đáp án
34. Tự luận
1 điểmKhông giới hạn

Cho hình thoi ABCD có \[\widehat A = 60^\circ \]. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và cắt đường thẳng AD tại F.

Chứng minh \[BE.DF = D{B^2}\]

Xem đáp án
35. Tự luận
1 điểmKhông giới hạn

Cho hình thoi ABCD có \[\widehat A = 60^\circ \]. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt đường thẳng AB tại E và cắt đường thẳng AD tại F.

Chứng minh \[\Delta BDE\sim\Delta DBF\]

Xem đáp án
36. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A có \[AB = 20cm,\,\,BC = 25cm\]. Gọi M là điểm thuộc cạnh AB.

Tính AC

Xem đáp án
37. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A có \[AB = 20cm,\,\,BC = 25cm\]. Gọi M là điểm thuộc cạnh AB.

Qua B vẽ đường thẳng vuông góc với CM tại H, cắt AC tại D. Chứng minh \[\Delta AMC\sim\Delta HMB\]

Xem đáp án
38. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A có \[AB = 20cm,\,\,BC = 25cm\]. Gọi M là điểm thuộc cạnh AB.

Chứng minh \[AC.AD = AM.AB\]

Xem đáp án
39. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại A có \[AB = 20cm,\,\,BC = 25cm\]. Gọi M là điểm thuộc cạnh AB.

Chứng minh \[DM \bot BC\]

Xem đáp án
40. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].

Tính BD và CD

Xem đáp án
41. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].

Qua D kẻ đường thẳng vuông góc với BC cắt AC tại K. Qua K kẻ đường thẳng vuông góc với AD cắt AD, AB, BC lần lượt tại E, F, H. Chứng minh \[\Delta ABC\sim\Delta HDK\]

Xem đáp án
42. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].

Chứng minh \[AK\parallel DF\]

Xem đáp án
43. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].

Chứng minh \[\Delta CHA\] vuông tại A

Xem đáp án
44. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].

Chứng minh \[\frac{{CH}}{{AH}} = \frac{{KD}}{{BF}}\]

Xem đáp án
45. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông ở A, điểm M thuộc cạnh AC. Kẻ MD vuông góc với BC tại D. Gọi E là giao điểm của AB và MD.

Chứng minh rằng \[\Delta ABC\sim\Delta DBE\]

Xem đáp án
46. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông ở A, điểm M thuộc cạnh AC. Kẻ MD vuông góc với BC tại D. Gọi E là giao điểm của AB và MD.

Chứng minh rằng \[MA.MC = MD.ME\]

Xem đáp án
47. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông ở A, điểm M thuộc cạnh AC. Kẻ MD vuông góc với BC tại D. Gọi E là giao điểm của AB và MD.

Chứng minh rằng \[\Delta MAD\sim\Delta MEC\]

Xem đáp án
48. Tự luận
1 điểmKhông giới hạn

Cho tam giác ABC vuông ở A, điểm M thuộc cạnh AC. Kẻ MD vuông góc với BC tại D. Gọi E là giao điểm của AB và MD.

Chứng minh rằng \[AB.AE = AM.AC\]

Xem đáp án
© All rights reserved VietJack