vietjack.com

540 câu trắc nghiệm tổng hợp Toán rời rạc có đáp án - Phần 12
Quiz

540 câu trắc nghiệm tổng hợp Toán rời rạc có đáp án - Phần 12

V
VietJack
Đại họcTrắc nghiệm tổng hợp7 lượt thi
30 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Một học viên phải trả lời 8 trong số 10 câu hỏi cho một kỳ thi. Học viên này có bao nhiêu sự lựa chọn nếu học viên phải trả lời ít nhất 4 trong 5 câu hỏi đầu tiên?

75

35

45

30

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Có 12 học viên trong một lớp. Có bao nhiêu cách để 12 học viên có 3 bài kiểm tra khác nhau nếu 4 học viên có chung mỗi bài kiểm tra?

34650

220

3465

650

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Nếu G = (V,E) là một đồ thị vô hướng thì:

Số đỉnh bậc lẻ và số đỉnh bậc chẵn là một số chẵn

Số đỉnh bậc chẵn là một số chẵn

Số đỉnh bậc lẻ là một số chẵn

Số đỉnh bậc lẻ là một số lẻ

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Những đơn đồ thị vô hướng nào dưới đây tồn tại nếu bậc của các đỉnh lần lượt là:

1, 4, 3, 2, 5, 6.

2, 1, 5, 2, 3, 3.

2, 4, 3, 4, 3, 2.

1, 4, 3, 2, 2, 3.

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Đơn đồ thị vô hướng nào dưới đây tồn tại nếu bậc của các đỉnh lần lượt là:

1, 2, 3, 4, 5.

0, 1, 2, 2, 3.

3, 4, 3, 4, 3.

1, 2, 3, 4, 7.

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị liên thông nào trong các đồ thị dưới đây là đồ thị Euler nếu số bậc của các đỉnh lần lượt là:

2, 4, 1, 2, 6

3, 4, 4, 2, 4

1, 4, 2, 5, 2

4, 4, 6, 5, 3

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Trong cách biểu diễn đồ thị bằng danh sách cạnh chúng ta lưu trữ:

Danh sách tất cả các cạnh.

Danh sách tất cả các đỉnh

Danh sách tất cả các cạnh và các đỉnh.

Không lưu trữ danh sách cạnh và đỉnh nào.

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Trong biểu diễn đồ thị bằng danh sách kề, mỗi danh sách kề chứa:

Các cạnh kề với một đỉnh.

Các đỉnh kề với một đỉnh.

Tất cả các đỉnh kề và cạnh kề với nó.

Các bậc của đỉnh kề với một đỉnh.

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Tổng tất cả các bậc trong một đồ thị vô hướng bằng:

Hai lần số cạnh.

Hai lần số đỉnh.

Trung bình cộng của số đỉnh và số cạnh.

Tổng của số đỉnh và số cạnh.

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Nếu bậc của mỗi đỉnh trong đồ thị đều chẵn thì:

Đồ thị là liên thông.

Đồ thị không liên thông.

Tính liên thông của đồ thị không xác định.

Đồ thị là liên thông mạnh

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị dưới dạng ma trận kề:

Là đồ thị:

Euler

Hamilton và Euler

Hamilton

Không liên thông

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Cho đồ thị vô hướng G = (V,E), khẳng định nào sau đây là đúng?

Thuật toán DFS(u) duyệt tất cả các đỉnh của đồ thị trong cùng thành phần liên thông với đỉnh u

Thuật toán DFS(u) luôn tìm ra được đường đi giữa hai đỉnh bất kì của đồ thị

Thuật toán DFS(u) duyệt tất cả các thành phần liên thông của đồ thị

Thuật toán DFS(u) duyệt tất cả các đỉnh của đồ thị mỗi đỉnh đúng một lần

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Cho đồ thị vô hướng G = (V,E), khẳng định nào dưới đây là đúng?

Thuật toán BFS(u) duyệt tất cả các thành phần liên thông của đồ thị

Thuật toán BFS(u) luôn tìm ra được đường đi giữa hai đỉnh bất kì của đồ thị

Thuật toán BFS(u) duyệt tất cả các đỉnh của đồ thị trong cùng thành phần liên thông với đỉnh u

Thuật toán BFS(u) duyệt tất cả các đỉnh của đồ thị mỗi đỉnh đúng một lần

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị K4 có số đỉnh và số cạnh tương ứng là?

4,6

4,8

5,8

4,4

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Phát biểu nào sau đây là sai khi nói đến đồ thị phân đôi đầy đủ Km,n .

Có tập đỉnh được phân thành hai tập con tương ứng có m đỉnh và n đỉnh.

Có một cạnh giữa hai đỉnh nếu và chỉ nếu một đỉnh thuộc tập con này và đỉnh thứ hai thuộc tập con kia.

Có một cạnh giữa hai đỉnh nếu và chỉ nếu mỗi đỉnh đều thuộc vào hai tập đỉnh con.

Có m+n đỉnh, mn cạnh.

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị có đường đi vô hướng Euler khi và chỉ khi:

Liên thông và có hai đỉnh bậc lẻ.

Không liên thông và có hai đỉnh bậc lẻ.

Liên thông và có một đỉnh bậc lẻ.

Không liên thông và không có đỉnh bậc lẻ.

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị phân đôi đầy đủ K có số màu bằng:

3

4

2

-2

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Đường đi Euler vô hướng trên một đồ thị có đỉnh đầu và đỉnh cuối:

Trùng nhau

Khác nhau

Có cùng bậc chẵn

Đỉnh đầu bậc chẵn đỉnh cuối bậc lẻ

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Nếu G là đồ thị Euler thì:

Không có đỉnh bậc chẵn

Không có đường đi Euler.

Không có chu trình Euler

Có chu trình Euler

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Số màu của đồ thị Cn (với n chẵn) là:

1

2

3

4

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Số màu của đồ thị Cn (với n lẻ) là:

1

2

3

4

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Chu trình Hamilton là:

Chu trình đi qua tất cả các đỉnh mỗi đỉnh đúng một lần trừ đỉnh bậc lẻ

Chu trình đi qua tất cả các đỉnh mỗi đỉnh đúng một lần trừ đỉnh bậc chẵn

Chu trình đi qua tất cả các đỉnh của đồ thị mỗi đỉnh đúng một lần

Chu trình đi qua tất cả các đỉnh của đồ thị mỗi đỉnh hơn một lần

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị liên thông G có một đỉnh có bậc bằng một thì:

G có chu trình Hamilton

G có chu trình Euler

G không có chu trình Hamilton

G không có chu trình

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Khi xây dựng chu trình Hamilton, nếu lấy hai cạnh liên thuộc với một đỉnh đặt vào chu trình thì:

Có thể xóa tất cả các cạnh còn lại không liên thuộc với đỉnh đó.

Có thể xóa tất cả các cạnh còn lại liên thuộc với đỉnh đó.

Có thể xóa tất cả các cạnh còn lại của đồ thị.

Có thể lấy thêm các cạnh liên thuộc với đỉnh đó.

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Số màu trong đồ thị hình bánh xe W (với n chẵn) là:

1

2

3

4

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Số màu trong đồ thị hình bánh xe Wn (với n lẻ) là:

1

2

3

4

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Cho đơn đồ thị phẳng liên thông có số đỉnh bằng 6 và mỗi đỉnh đều bậc 4. Số miền trong biểu diễn phẳng của đồ thị là:

5 miền

6 miền

7 miền

8 miền

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Đồ thị nào trong các đồ thị không phẳng sau đây có tính chất: bỏ đi một đỉnh bất kỳ và các cạnh liên thuộc với nó tạo ra một đồ thị phẳng.

K5

K2

K6

K7

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Độ phức tạp của thật toán Floyd là:

O(n3 log2n)

O(n2)

O(n3)

O(n2 log2n)

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Thuật toán Dijkstra được áp dụng cho:

Đồ thị vô hướng hoặc có hướng có trọng số không âm.

Đồ thị liên thông có trọng số không âm

Đồ thị có hướng có trọng số không âm.

Đồ thị vô hướng hoặc có hướng không có chu trình âm

Xem đáp án
© All rights reserved VietJack