2048.vn

29 câu trắc nghiệm Toán 11 Chân trời sáng tạo Giới hạn của hàm số có đáp án
Quiz

29 câu trắc nghiệm Toán 11 Chân trời sáng tạo Giới hạn của hàm số có đáp án

VietJack
VietJack
ToánLớp 1123 lượt thi
29 câu hỏi
1. Trắc nghiệm
1 điểm

Cho \[{\rm{a, b}} \in {\rm{R}}\] thỏa mãn\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {{\rm{(a + 5)}}{{\rm{x}}^{\rm{2}}} - {\rm{2(a + 2)x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1}}}}\]\[\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{1}}} \frac{{\sqrt {\left( {{\rm{a + 5}}} \right){{\rm{x}}^{\rm{2}}} - {\rm{2}}\left( {{\rm{a + 2}}} \right){\rm{x + 2a + b + 7}}} - \sqrt {{\rm{6x + 3}}} }}{{{{\rm{x}}^{\rm{2}}} - {\rm{2x + 1 }}}}{\rm{ = }}\frac{{{\rm{13}}}}{{{\rm{12}}}}\]. Tính giá trị của \[{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\]

2

\[\frac{5}{2}\]

5

3

Xem đáp án
2. Trắc nghiệm
1 điểm

Cho đa thức P(x) thỏa mãn \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{{\rm{x}} - 3}} = 2\]. Tính \[\mathop {\lim }\limits_{{\rm{x}} \to 3} \frac{{{\rm{P}}\left( {\rm{x}} \right) - 2}}{{\left( {{{\rm{x}}^2} - 9} \right)\left( {\sqrt {{\rm{P}}\left( {\rm{x}} \right) + 2} + 1} \right)}}\]

\[\frac{1}{3}\]

\[\frac{1}{6}\]

\[\frac{1}{9}\]

\[\frac{2}{3}\]

Xem đáp án
3. Trắc nghiệm
1 điểm

Kết quả \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {2020{{\rm{x}}^2} + {\rm{x}} + 3} - \sqrt {2021{{\rm{x}}^2} + 2} } \right)\] bằng

\[ - \infty \]

\[ + \infty \]

0

1

Xem đáp án
4. Trắc nghiệm
1 điểm

Cho \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f(x)}} - 5}}{{{\rm{x}} - 4}} = 5\]. Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 4} \frac{{{\rm{f}}\left( {\rm{x}} \right) - 5}}{{\left( {\sqrt {\rm{x}} - 2} \right)\left( {\sqrt {6{\rm{f(x)}} + 6} + 4} \right)}}\]

-2

-1

2

3

Xem đáp án
5. Trắc nghiệm
1 điểm

Tính \[\mathop {\lim }\limits_{{\rm{x}} \to \frac{{\rm{\pi }}}{{\rm{4}}}} \frac{{\sin {\rm{x}} - \cos {\rm{x}}}}{{\tan \left( {{\rm{x}} - \frac{{\rm{\pi }}}{4}} \right)}}\]

\[ - \sqrt 2 \]

\[ + \sqrt 2 \]

−2

+2

Xem đáp án
6. Trắc nghiệm
1 điểm

Biết giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \frac{{\sqrt {3{\rm{x}} + 3} - {\rm{m}}}}{{{\rm{x}} - 2}} = \frac{{\rm{a}}}{{\rm{b}}}\], m là số thực; a,b là các số nguyên và \[\frac{{\rm{a}}}{{\rm{b}}}\] tối giản. Tính a − b

0

1

-1

-2

Xem đáp án
7. Trắc nghiệm
1 điểm

Cho a, b là các số nguyên và\[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}} - {\rm{5}}}}{{{\rm{x}} - 1}} = 20\]. Tính \[{\rm{P = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}\]

125

225

525

325

Xem đáp án
8. Trắc nghiệm
1 điểm

Cho hàm số \[{\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {{\rm{mx + 1}}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} \ne 0}\\{4{{\rm{x}}^2} + 5{\rm{n}}\,\,{\rm{khi}}\,\,{\rm{x}} = 0}\end{array}} \right.\left( {{\rm{m,n}} \in \mathbb{R}} \right)\] liên tục tại x0 = 0. Tìm hệ thức liên hệ giữa m và n

m = 2n

m = 5n

m = 10n

m = n

Xem đáp án
9. Trắc nghiệm
1 điểm

Chọn kết quả đúng trong các kết quả sau của \[\mathop {\lim }\limits_{{\rm{x}} \to {{\frac{{\rm{\pi }}}{{\rm{2}}}}^ + }} \left( {\frac{{\rm{\pi }}}{{\rm{2}}} - {\rm{x}}} \right).\tan {\rm{x}}\]

0

1

Không tồn tại

\(\infty \)

Xem đáp án
10. Trắc nghiệm
1 điểm

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {{\rm{x}} + 5} - \sqrt {{\rm{x}} - 6} } \right)\] là

1

2

3

0

Xem đáp án
11. Trắc nghiệm
1 điểm

Tìm giới hạn \[{\rm{A}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^{\rm{n}}} - 1}}{{{{\rm{x}}^{\rm{m}}} - 1}},{\rm{m}},{\rm{n}} \in {\mathbb{N}^ * }\]:

0

\( + \infty \)

\[\frac{{\rm{m}}}{{\rm{n}}}\]

\[\frac{{\rm{n}}}{{\rm{m}}}\]

Xem đáp án
12. Trắc nghiệm
1 điểm

Kết quả của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {5^ - }} \frac{{12 - {{\rm{x}}^2}}}{{5 - {\rm{x}}}}\] là:

\( - \infty \)

\( + \infty \)

0

1

Xem đáp án
13. Trắc nghiệm
1 điểm

Tính giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {{{\left| {\rm{x}} \right|}^5} + {\rm{x}} + 1} \right)\]

\( + \infty \)

\( - \infty \)

\(\infty \)

0

Xem đáp án
14. Trắc nghiệm
1 điểm

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {3^ - }} \frac{{3 - {\rm{x}}}}{{\sqrt {27 - {{\rm{x}}^3}} }}\]bằng:

34

0

35

53

Xem đáp án
15. Trắc nghiệm
1 điểm

Giá trị của giới hạn  \[\mathop {\lim }\limits_{{\rm{x}} \to - 3} \left| {\frac{{ - {{\rm{x}}^2} - {\rm{x}} + 6}}{{{{\rm{x}}^2} + 3{\rm{x}}}}} \right|\]

\[\frac{3}{4}\]

\[\frac{5}{3}\]

\[\frac{3}{5}\]

\[\frac{3}{2}\]

Xem đáp án
16. Trắc nghiệm
1 điểm

Trong các mệnh đề sau đây mệnh đề nào là đúng?

\[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = \frac{1}{3}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = - \frac{1}{3}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = 0\]

Không tồn tại \[\mathop {\lim }\limits_{{\rm{x}} \to {3^ + }} \frac{{\left| {{\rm{x}} - 3} \right|}}{{3{\rm{x}} - 9}} = 0\]

Xem đáp án
17. Trắc nghiệm
1 điểm

Cho hàm số \({\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}^2} - 3\,\,{\rm{khi}}\,\,{\rm{x}} \ge 2}\\{{\rm{x}} - 1\,\,{\rm{khi}}\,\,{\rm{x}} < 2}\end{array}} \right.\). Chọn kết quả đúng của \[\mathop {\lim }\limits_{{\rm{x}} \to 2} {\rm{f}}\left( {\rm{x}} \right)\]

A.

1

2

3

Xem đáp án
18. Trắc nghiệm
1 điểm

Giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \sqrt {\frac{{\left( {{{\rm{x}}^2} + 3} \right){\rm{x}}}}{{{{\rm{x}}^3} - 1}}} \] bằng

\[\frac{2}{{\sqrt 2 }}\]

1

2

\[\frac{1}{{\sqrt 2 }}\]

Xem đáp án
19. Trắc nghiệm
1 điểm

Tính giới hạn của hàm số \[\mathop {\lim }\limits_{{\rm{x}} \to \infty } \frac{{{{\rm{x}}^3} + 3{{\rm{x}}^2} + 4}}{{2{{\rm{x}}^3}}}\]

1

2

\[\frac{2}{3}\]

\(\frac{1}{2}\)

Xem đáp án
20. Trắc nghiệm
1 điểm

Số M là giới hạn trái của hàm số y = f(x) tại x = x0 có kí hiệu là:

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}^ - } {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}^ + } {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{f}}\left( {\rm{x}} \right){\rm{ = M}}\]

Xem đáp án
21. Trắc nghiệm
1 điểm

Hàm số y = f(x) có giới hạn L khi \[{\rm{x}} \to {{\rm{x}}_0}\] có kí hiệu là:

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to \infty } {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to \pm \infty } {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {\rm{L}}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = }}{{\rm{x}}_0}\]

Xem đáp án
22. Trắc nghiệm
1 điểm

Chọn đáp án đúng:

Giả sử \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}}\] thì:

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}}{\rm{.f}}\left( {\rm{x}} \right){\rm{ = c}}{\rm{.L}}\] với c là hằng số

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \sqrt {{\rm{f}}\left( {\rm{x}} \right)} {\rm{ = }}\sqrt {\rm{L}} \,\,\forall {\rm{L}} \in \mathbb{Z}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}}{\rm{.f}}\left( {\rm{x}} \right){\rm{ = L}}\] với c là hằng số

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}}{\rm{.f}}\left( {\rm{x}} \right){\rm{ = c}}\]

Xem đáp án
23. Trắc nghiệm
1 điểm

Cho các giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = 1}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = 4}}\].Tính\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + 2g}}\left( {\rm{x}} \right)} \right]\]

4

8

9

10

Xem đáp án
24. Trắc nghiệm
1 điểm

Tính giá trị của giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to 2} \left( {2 + {\rm{x}}} \right)\]

2

3

4

5

Xem đáp án
25. Trắc nghiệm
1 điểm

Chọn đáp án đúng:

Nếu \[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{f}}\left( {\rm{x}} \right){\rm{ = L}},\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{g}}\left( {\rm{x}} \right){\rm{ = M}}\]thì:

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L + M}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L }}{\rm{. M}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L}} - {\rm{M}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} \left[ {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right] = {\rm{L}} + 3{\rm{M}}\]

Xem đáp án
26. Trắc nghiệm
1 điểm

Chọn đáp án sai:

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{x}} = {{\rm{x}}_0}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{c}} = {\rm{c}}\], với c là hằng số

\[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{c = c}}\], với c là hằng số

\[\mathop {\lim }\limits_{{\rm{x}} \to \pm \infty } {\rm{c}} = - {\rm{c}}\], với c là hằng số

Xem đáp án
27. Trắc nghiệm
1 điểm

Biết \[\mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\sqrt {{{\rm{x}}^2} + {\rm{x}} + 2} - \sqrt[3]{{7{\rm{x}} + 1}}}}{{\sqrt 2 ({\rm{x}} - 1)}} = \frac{{{\rm{a}}\sqrt {\rm{2}} }}{{\rm{b}}}{\rm{ + c}}\] với \[{\rm{a, b, c}} \in \mathbb{Z}\] và \[\frac{{\rm{a}}}{{\rm{b}}}\] là phân số tối giản. Giá trị của a + b + c bằng:

13

\[\frac{5}{3}\]

0

2

Xem đáp án
28. Trắc nghiệm
1 điểm

Cho giới hạn \[\mathop {\lim }\limits_{{\rm{x}} \to + \infty } \left( {\sqrt {36{{\rm{x}}^2} + 5{\rm{ax}} + 1} - 6{\rm{x}} + {\rm{b}}} \right) = \frac{{20}}{3}\] và đường thẳng 

\[{\rm{\Delta }}:{\rm{y = ax + 6b}}\] đi qua điểm M(3;42) với \[{\rm{a, b}} \in \mathbb{R}\]. Giá trị của biểu thức \[{\rm{T = }}{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^2}\] là:

12

24

41

13

Xem đáp án
29. Trắc nghiệm
1 điểm

Cho a, b là các số dương. Biết \[\mathop {\lim }\limits_{{\rm{x}} \to - \infty } \left( {\sqrt {9{{\rm{x}}^2} - {\rm{ax}}} + \sqrt[3]{{{\rm{27}}{{\rm{x}}^{\rm{3}}}{\rm{ + b}}{{\rm{x}}^{\rm{2}}}{\rm{ + 5}}}}} \right) = \frac{7}{{27}}\] Tìm giá trị lớn nhất của a. b

\[\frac{{18}}{{49}}\]

\[\frac{{49}}{{18}}\]

\[\frac{{18}}{{19}}\]

\[\frac{{19}}{{18}}\]

Xem đáp án
© All rights reserved VietJack