vietjack.com

ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ một điểm đến một đường thẳng
Quiz

ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ một điểm đến một đường thẳng

V
VietJack
ĐHQG Hà NộiĐánh giá năng lực6 lượt thi
13 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABC trong đó SA,AB,BC đôi một vuông góc và SA=AB=BC=1. Khoảng cách giữa hai điểm S và C nhận giá trị nào trong các giá trị sau ?

\[\sqrt 2 .\]

\[\sqrt 3 .\]

2

\[\frac{{\sqrt 3 }}{2}.\]

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp A.BCD có cạnh \[AC \bot (BCD)\] và BCD  là tam giác đều cạnh bằng a. Biết \(AC = a\sqrt 2 \) và M là trung điểm của BD. Khoảng cách từ C đến đường thẳng AM bằng

\[a\sqrt {\frac{7}{5}} .\]

\[a\sqrt {\frac{4}{7}} .\]

\[a\sqrt {\frac{6}{{11}}} .\]

\[a\sqrt {\frac{2}{3}} .\]

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Hình chóp đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi H là trung điểm của BC, khoảng cách từ S đến AH bằng:

2a.

\[a\sqrt 3 .\]

a.

\[a\sqrt 5 .\]

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp A.BCDcó cạnh \[AC \bot (BCD)\]và BCD là tam giác đều cạnh bằng a. Biết \(AC = a\sqrt 2 \), khoảng cách từ A đến đường thẳng BD bằng:

\[\frac{{3a\sqrt 2 }}{2}\]

\[\frac{{2a\sqrt 3 }}{3}\]

\[\frac{{4a\sqrt 5 }}{3}\]

\[\frac{{a\sqrt {11} }}{2}\]

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có \[SA \bot \left( {ABCD} \right),\] đáy ABCD là hình thoi cạnh bằng a và \(\widehat B = {60^0}\)Biết SA=2a. Tính khoảng cách từ A đến SC.

\[\frac{{3a\sqrt 2 }}{2}\]

\[\frac{{4a\sqrt 3 }}{3}\]

\[\frac{{2a\sqrt 5 }}{5}\]

\[\frac{{5a\sqrt 6 }}{2}\]

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách từ đỉnh AA của hình lập phương đó đến đường thẳng DB′ bằng

\[a\sqrt 2 \]

\[\frac{{a\sqrt 6 }}{2}\]

\[\frac{{a\sqrt 3 }}{2}\]

\[\frac{{a\sqrt 6 }}{3}\]

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD. Khoảng cách từ M đến SA nhận giá trị nào trong các giá trị sau?

\[\frac{{a\sqrt 5 }}{2}\]

\[2a\sqrt 5 \]

\[a\sqrt 2 \]

\[\frac{{a\sqrt 3 }}{2}\]

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABCD có \[SA \bot (ABCD),SA = 2a,\;ABCD\] là hình vuông cạnh bằng a. Gọi O là tâm của ABCD, tính khoảng cách từ O đến SC.

\[\frac{{a\sqrt 3 }}{3}\]

\[\frac{{a\sqrt 3 }}{4}\]

\[\frac{{a\sqrt 2 }}{3}\]

\[\frac{{a\sqrt 2 }}{4}\]

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp tứ giác đều có cạnh đáy bằng aa và góc hợp bởi một cạnh bên và mặt đáy bằng α. Khoảng cách từ tâm của đáy đến một cạnh bên bằng

\[a\sqrt 2 \cot \alpha \]

\[a\sqrt 2 \tan \alpha \]

\[\frac{{a\sqrt 2 }}{2}{\rm{cos}}\alpha \]

\[\frac{{a\sqrt 2 }}{2}\sin \alpha \]

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng \(a\sqrt 2 \). Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng

2a

\[\sqrt 3 a\]

0

\(\sqrt 2 a\)

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một vàSA=3a, SB=a,SC=2a. Khoảng cách từ A đến đường thẳng BC bằng:

\[\frac{{3a\sqrt 2 }}{2}\]

\[\frac{{7a\sqrt 5 }}{5}\]

\[\frac{{8a\sqrt 3 }}{3}\]

\[\frac{{5a\sqrt 6 }}{6}\]

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình chóp S.ABC trong đó SA, AB, BC vuông góc với nhau từng đôi một. Biết \[SA = 3a,\;AB = a\sqrt 3 A,\;BC = a\sqrt 6 \]. Khoảng cách từ B đến SC bằng

\[a\sqrt 2 \]

\[2a\]

\[2a\sqrt 3 \]

\[a\sqrt 3 \]

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng aa. Khoảng cách từ ba điểm nào sau đây đến đường chéo AC′ bằng nhau ?

A′,B,C′.

B,C,D.

B′,C′,D′.

A,A′,D′.

Xem đáp án
© All rights reserved VietJack