vietjack.com

ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các dạng vô định của giới hạn
Quiz

ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các dạng vô định của giới hạn

V
VietJack
ĐHQG Hà NộiĐánh giá năng lực8 lượt thi
20 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - 1} \left( {{x^2} - x + 7} \right)\]bằng?

5

7

9

6

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - 2} \left( {3{x^2} - 3x - 8} \right)\]bằng?

−2

5

9

10

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to 2} \sqrt {\frac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \]bằng?

3

\(\sqrt 3 \)

−3

\(\frac{1}{3}\)

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} - 2x - 1}}{{{x^2} + 1}}\] bằng?

−3

−2

2

3

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left| {x - 3} \right|}}{{3x - 9}}\]bằng?

\[ - \frac{1}{3}.\]

0

\[\frac{1}{3}.\]

Không tồn tại

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Trong các mệnh đề sau đâu là mệnh đề đúng?

\[\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = - 1\]

\[\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = 0\]

\[\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = 1\]

Không tồn tại \[\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}}\]

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 4x + 3}}{{{x^2} - 9}}\]bằng?

\[\frac{1}{5}.\]

\[\frac{2}{5}.\]

\(\frac{1}{2}\)

\[\frac{1}{3}.\]

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}\] bằng?

4

6

−4

−6

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{\sqrt {3x} - 3}}\] bằng?

\[\frac{2}{3}.\]

\[\frac{1}{3}.\]

\(\frac{1}{2}\)

1

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to 2} \frac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1} - 3}}\] bằng?

\(\frac{1}{2}\)

\[\frac{9}{8}.\]

1

\[\frac{3}{4}.\]

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to 0} \frac{{1 - \sqrt[3]{{x + 1}}}}{{3x}}\]bằng?

\[ - \frac{1}{3}.\]

0

\[\frac{1}{3}.\]

\[\frac{{ - 1}}{9}.\]

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Tính\[\mathop {\lim }\limits_{x \to - \infty } (x - 1)\sqrt {\frac{{{x^2}}}{{2{x^4} + {x^2} + 1}}} \] bằng?

\[ - \frac{{\sqrt 2 }}{2}\]

\[\frac{{\sqrt 2 }}{2}.\]

\(\frac{1}{2}\)

\( - \frac{1}{2}\)

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 3} - x} \right)\]bằng?

−1.

0.

\(\frac{1}{2}\)

1

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 1} + x - 1} \right)\]bằng?

−1

0

\(\frac{1}{2}\)

1

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số \[f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \]. Khẳng định nào sau đây là đúng?

Giới hạn của f(x) khi \[x \to + \infty \] là 0.

Giới hạn của f(x khi \[x \to - \infty \]là 2.

Giới hạn của f(x) khi \[x \to + \infty \]là −2.

\[\mathop {\lim }\limits_{x \to + \infty } f(x) = - \mathop {\lim }\limits_{x \to - \infty } f(x)\]

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt[3]{{{x^3} + 1}} + x - 1} \right)\]bằng?

−1

0

\(\frac{1}{2}\)

\[ - \infty \]

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to - \infty } x\sqrt {\frac{{3x + 2}}{{2{x^3} + {x^2} - 1}}} \] bằng?

\[ - \sqrt {\frac{3}{2}.} \]

\[\sqrt {\frac{3}{2}} .\]

\[\frac{3}{2}.\]

\[ - \frac{3}{2}.\]

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Tính \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {1 + 2x} .\sqrt[3]{{1 + 3x}}.\sqrt[4]{{1 + 4x}} - 1}}{x}\]

\[\frac{{23}}{2}\]

24

\[\frac{3}{2}\]

3

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Giới hạn  \[\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 3x + 5} }}{{4x - 1}}\].

\[\frac{1}{4}\]

\[ - \frac{1}{4}\]

1

0

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Cho a,b là các số nguyên và \[\mathop {\lim }\limits_{x \to 1} \frac{{a{x^2} + bx - 5}}{{x - 1}} = 20\]. Tính \[P = {a^2} + {b^2} - a - b\]

400.

225.

320.

325.

Xem đáp án
© All rights reserved VietJack