Đề kiểm tra Toán 12 Kết nối tri thức Chương 6 có đáp án - Đề 2
11 câu hỏi
Một hộp có 10 viên bi trắng và 15 viên bi đỏ, các viên bi có cùng kích thước và khối lượng. Lần thứ nhất lấy ngẫu nhiên một viên bi trong hộp và không trả lại. Lần thứ hai lẫy ngẫu nhiên thêm một viên bi nữa trong hộp đó.
Gọi A là biến cố: “Lần thứ hai lấy được 1 viên bi trắng”;
B là biến cố: “Lần thứ nhất lấy được 1 viên bi đỏ”.
Tính \[P\left( {A|B} \right)\].
\(\frac{5}{{12}}\).
\(\frac{3}{5}\).
\(\frac{1}{4}\).
\(\frac{7}{{30}}\).
Một công ty bất động sản đấu giá quyền sử dụng hai mảnh đất độc lập. Khả năng trúng đấu giá cao nhất của mảnh đất số 1 là \(0,7\) và mảnh đất số 2 là \(0,8.\) Xác suất để công ty trúng giá cao nhất mảnh đất số 2, biết công ty trúng giá cao nhất mảnh đất số 1 là
\(0,8.\)
\(0,7.\)
\(0,75.\)
\(0,6.\)
Cho hai biến cố \(A\) và \(B\) có \(P\left( B \right) > 0\) và \(P\left( {A|B} \right) = 0,7\). Tính \(P\left( {\overline A |B} \right)\) có kết quả là
\(P\left( {\overline A |B} \right) = 0,5\).
\(P\left( {\overline A |B} \right) = 0,6\).
\(P\left( {\overline A |B} \right) = 0,3\).
\(P\left( {\overline A |B} \right) = 0,4\).
Cho hai biến cố \[A,\,B\] thỏa mãn \[P\left( {\overline B } \right) = 0,2;\,P\left( {A|B} \right) = 0,5;\,P\left( {\left. A \right|\overline B } \right) = 0,3\]. Khi đó, \[P\left( A \right)\] bằng
\(0,46\).
\(0,34\).
\(0,15\).
\(0,31\).
Cho hai biến cố \(A,B\) thỏa mãn \(P\left( A \right) = 0,4\), \(P\left( B \right) = 0,3\), \(P\left( {A|B} \right) = 0,25\). Khi đó, \(P\left( {B|A} \right)\) bằng
\(0,1875\).
\(0,48\).
\(0,333\).
\(0,95\).
Cho hai biến cố \[A\] và \[B\], với \[P\left( B \right) = 0,8\], \[P\left( {A|B} \right) = 0,7\], \[P\left( {A|\overline B } \right) = 0,45\]. Tính \[P\left( {B|A} \right)\].
\[0,25\].
\[\frac{{56}}{{65}}\].
\[0,65\].
\[0,5\].
Một nhà máy có hai phân xưởng cùng sản xuất một loại sản phẩm. Phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) và phân xưởng thứ hai sản xuất \(40{\rm{\% }}\) tổng số sản phẩm của cả nhà máy. Tỉ lệ phế phẩm của từng phân xưởng lần lượt là \(16{\rm{\% }}\) và \(20{\rm{\% }}\). Lấy ngẫu nhiên một sản phẩm trong kho hàng của nhà máy.
a) Xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.
b) Xác suất để lấy được phế phẩm bằng 0,176.
c) Giả sử đã lấy được phế phẩm, xác suất phế phẩm đó do phân xưởng thứ nhất sản xuất bằng 0,55 (kết quả làm tròn đến hàng phần trăm).
d) Nếu lấy được sản phẩm tốt, khả năng sản phẩm đó do phân xưởng thứ hai sản xuất là cao hơn khả năng sản phẩm đó do phân xưởng thứ nhất sản xuất.
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
a) Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
b) Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
c) Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
d) Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Có ba đồng xu được đựng trong một hộp kín. Đồng xu thứ nhất là một đồng xu cân đối với tỷ lệ mặt ngửa và mặt sấp bằng nhau. Đồng xu thứ hai là một đồng xu bị lỗi có khả năng mặt ngửa xuất hiện là 70%. Đồng xu thứ ba là một đồng xu hai mặt ngửa (khi tung luôn ra mặt ngửa). Bạn An lấy ngẫu nhiên một đồng xu từ hộp và tung nó hai lần. Kết quả của hai lần tung cho thấy xuất hiện một lần mặt sấp và một lần mặt ngửa. Tính xác suất để đồng xu bạn đã chọn là đồng xu thứ hai (đồng xu bị lỗi) (Kết quả làm tròn đến hàng phần trăm).
Trong một kì thi học sinh giỏi cấp tỉnh dành cho học sinh trung học phổ thông của một khu vực (các học sinh của cả ba khối cùng tham gia giải một đề thi), ban tổ chức thống kê kết quả thi và thu được kết quả như sau:
- Trong 500 học sinh tham gia cuộc thi, có \(60{\rm{\% }}\) học sinh đạt huy chương, trong đó có 15 học sinh đạt huy chương vàng, 80 học sinh đạt huy chương bạc, còn lại là huy chương đồng.
- Trong số 300 học sinh lớp 12 có 6 học sinh đạt huy chương vàng, 24 học sinh đạt huy chương bạc. Số học sinh đạt huy chương đồng lớp 12 chiếm \(9{\rm{\% }}\) tổng số học sinh dự thi.
Chọn ngẫu nhiên một em học sinh. Nếu biết học sinh được chọn là học sinh lớp 12 đạt huy chương thì xác suất để học sinh được chọn đạt huy chương đồng là a%. Tìm a. (Kết quả làm tròn đến hàng đơn vị).
Một cơ quan hành chính nhà nước thực hiện việc tinh giản biên chế thông qua phỏng vấn. Tỷ lệ nhân viên của cơ quan thuộc hai nhóm trình độ: Đại học, Cao đẳng lần lượt là \[65\% \] và \[35\% \]. Qua phỏng vấn thì tỷ lệ nhân viên bị tinh giản của nhóm đại học là\[10\% \], nhóm cao đẳng là \[15\% \]. Chọn một nhân viên bất kỳ đã bị tinh giản thì hãy tính xác suất để người này có trình độ đại học (kết quả là một số thập phân nhỏ hơn 1 đã làm tròn đến hàng phần trăm).


