Đề kiểm tra Toán 12 Chân trời sáng tạo Chương 5 có đáp án - Đề 2
11 câu hỏi
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian Oxyz, mặt phẳng nào dưới đây nhận \[\overrightarrow n = \left( {3;1; - 7} \right)\] là một vectơ pháp tuyến?
\[3x + z + 7 = 0\].
\[3x - y - 7z + 1 = 0\].
\[3x + y - 7 = 0\].
\[3x + y - 7z - 3 = 0\].
Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y - 4}}{{ - 5}} = \frac{{z + 5}}{3}\). Điểm nào sau đây thuộc đường thẳng \(d\)?
\(M\left( {3;4; - 5} \right)\).
\(N\left( {2; - 5;3} \right)\).
\(P\left( { - 3; - 4;5} \right)\).
\(Q\left( {2;5; - 3} \right)\).
Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình mặt cầu \(\left( S \right)\) tâm \(A\left( {2;1;0} \right)\), đi qua điểm \(B\left( {0;1;2} \right)\)?
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 8\).
\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 64\).
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 64\).
Trong không gian tọa độ Oxyz , cho đường thẳng \[\left( d \right)\]có phương trình \[\frac{{x + 1}}{{ - 2}} = \frac{{2 - y}}{3} = \frac{z}{2}\] . Vectơ nào sau đây là một vectơ chỉ phương của đường thẳng \[\left( d \right)\]?
\[\overrightarrow u = \left( { - 2; - 3;2} \right)\].
\[\overrightarrow u = \left( { - 2;3;2} \right)\].
\[\overrightarrow u = \left( {2; - 3; - 2} \right)\].
\[\overrightarrow u = \left( { - 2; - 3; - 2} \right)\].
Trong không gian Oxyz, cho hai điểm \(A\left( {1;3; - 2} \right),B\left( {2; - 2; - 1} \right)\). Phương trình đường thẳng \(AB\) là
\(\frac{{x + 1}}{1} = \frac{{y + 3}}{{ - 5}} = \frac{{z - 2}}{1}\).
\(\frac{{x - 1}}{1} = \frac{{y - 3}}{3} = \frac{{z + 2}}{{ - 2}}\).
\(\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 5}} = \frac{{z + 1}}{1}\).
\(\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 5}} = \frac{{z - 1}}{1}\).
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 7}}\]. Phương trình mặt phẳng đi qua \[A\left( {1;2;3} \right)\]và vuông góc với đường thẳng d là
\[4x + 3y + 7z - 11 = 0\].
\[4x + 3y + 7z + 11 = 0\].
\[4x + 3y - 7z + 11 = 0\].
\[4x + 3y - 7z - 11 = 0\].
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong không gian tọa độ Oxyz với mặt phẳng \[\left( {Oxy} \right)\] trùng với mặt đất với đơn vị trên mỗi trục là km, một hệ thống phòng không được đặt tại \(O\). Hệ thống phòng không được trạng bị Radar có thể phát hiện vật thể lạ trong phạm vị \(400\,{\rm{km}}\). Một vật thể (coi như một hạt) bay với tốc độ không đổi trên một đường thẳng, người quan sát Radar phát hiện vật thể di chuyển từ \(A\left( {320;148;45} \right)\) đến \(B\left( {280;133;40} \right)\) trong khoảng thời gian \(10\) giây.
a) Vectơ dịch chuyển của vật thể trên mỗi đơn vị thời gian được gọi là vectơ vận tốc của vật thể. Khi đó vectơ vận tốc của vật thể có tọa độ \(\overrightarrow v = \left( {4;1,5;0,5} \right)\) (đơn vị giây).
b) Đường thẳng \(AB\) có phương trình \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Khoảng thời gian từ khi vật thể ở A đến khi rơi xuống mặt đất là \(90\) giây.
d) Vị trí đầu tiên vật thể đi vào vùng quan sát của Radar có cao độ bằng \(48,25\)(kết quả làm tròn đến hàng phần trăm).
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Phần 3. Trắc nghiệm trả lời ngắn
Trong không gian Oxyz, cho đường thẳng \[d\]có phương trình \[\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{3}\] và ba điểm \[A\left( {2;\,0;\,0} \right),\,B\left( {0;\,4;\,0} \right),\,C\left( {0;\,0;\, - 2} \right)\]. Góc giữa đường thẳng \[d\] và mặt phẳng \[\left( {ABC} \right)\] bằng bao nhiêu độ (kết quả làm tròn đến hàng đơn vị)?
Trạm kiểm soát không quân đang theo dõi hai máy bay chiến đấu Su-30 và MiG-31. Giả sử trong không gian với hệ trục tọa độ \(Oxyz\), đơn vị đo mỗi trục là \(1\) km và xem mặt phẳng \(\left( {Oxy} \right)\) là mặt đất, tại cùng một thời điểm theo dõi ban đầu: máy bay chiến đấu Su-30 ở tọa độ \(A\left( {0;35;10} \right)\), bay theo hướng vectơ \(\overrightarrow {{v_1}} = \left( {3;4;0} \right)\) với tốc độ không đổi \(900\) (km/h) và máy bay chiến đấu MiG-31 ở tọa độ \(B\left( {31;10;11} \right)\), bay theo hướng \(\overrightarrow {{v_2}} = \left( {5;12;0} \right)\) với tốc độ không đổi \(910{\mkern 1mu} \,{\rm{(km/h)}}\). Khu vực này có gió mạnh thổi với vận tốc \(80\,{\rm{(km/h)}}\) theo hướng vectơ \(\vec u = \left( { - 3;0;4} \right)\), gió ảnh hưởng đến cả hai máy bay trong quá trình bay. Một khu vực không phận bị hạn chế bay đã được một quốc gia khác thiết lập, có dạng hình trụ với tâm đáy tại \(C\left( {178;430;0} \right)\), bán kính đáy \(7\)km, trục vuông góc với mặt đất và chiều cao \(43\)km. Máy bay MiG-31 có nhiệm vụ bay vào khu vực không phận bị hạn chế để thăm dò. Tại thời điểm máy bay chiến đấu MiG-31 bay ra khỏi khu vực không phận bị hạn chế thì khoảng cách giữa hai máy bay chiến đấu là bao nhiêu km? (làm tròn kết quả đến hàng đơn vị).
Một công ty xây dựng một hệ thống giám sát môi trường tại khu công nghiệp. Hai cảm biến không dây được đặt tại hai vị trí \(A,\,B\) trong không gian 3 chiều để thu thập dữ liệu không khí. Để đảm bảo tín hiệu truyền giữa hai cảm biến ổn định, công ty thiết kế một bóng bảo vệ tín hiệu hình cầu di động nhưng luôn đi qua cả hai cảm biến \(A\) và \(B\). Bóng này cần tiếp xúc với mặt đất để đảm bảo tính ổn định. Giả sử trong không gian với hệ toạ độ \(Oxyz\), toạ độ các điểm là \(A\left( {3;5; - 2} \right)\), \(B\left( { - 1;3;2} \right)\) và mặt đất được mô tả bằng mặt phẳng \(\left( P \right):2x + y - 2z + 9 = 0.\) Trong quá trình mô phỏng, điểm tiếp xúc giữa bóng bảo vệ và mặt đất (gọi là \(C\)) thay đổi. Kỹ sư cần xác định khoảng cách từ gốc tọa độ \(O\left( {0;0;0} \right)\) đến điểm tiếp xúc \(C\) để đánh giá mức độ ảnh hưởng từ vị trí đặt thiết bị. Gọi \({m_1}\) là giá trị lớn nhất và \({m_2}\) là giá trị nhỏ nhất của độ dài \(OC.\) Tính giá trị \({m_1}^2 + {m_2}^2.\)


