Đề kiểm tra Toán 12 Cánh diều Chương 6 có đáp án - Đề 2
11 câu hỏi
Cho hai biến cố \[A\] và \[B\], với \[P\left( B \right) = 0,8\], \[P\left( {AB} \right) = 0,4\]. Tính \[P\left( {A|B} \right)\].
\(\frac{1}{2}\).
\(\frac{1}{4}\).
\(\frac{1}{8}\).
\(2\).
Cho hai biến cố \(A,\,B\)với \(P\left( B \right) = 0,8;P\left( {A|B} \right) = 0,5\). Tính \[P\left( {AB} \right)\].
\(\frac{3}{7}\).
\(0,4\).
\(0,8\).
\(0,5\).
Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó.
Xét các biến cố:
A: “Tổng số chấm trên hai xúc xắc bằng 7”;
B: “Xúc xắc thứ nhất xuất hiện mặt 1 chấm”.
Tính \(P\left( {\left. {A\,} \right|B} \right)\).
\(6\).
\(36\).
\(\frac{1}{{36}}\).
\(\frac{1}{6}\).
Cho hai biến cố \(A\) và \(B\) với \(P\left( B \right) = 0,8\), \(P\left( {A|B} \right) = 0,7\), \(P\left( {A|\overline B } \right) = 0,45\). Tính \(P\left( A \right)\).
\(0,25\).
\(0,65\).
\(0,55\).
\(0,5\).
Giả sử \(A\) và \(B\) là hai biến cố ngẫu nhiên thỏa mãn \(P\left( A \right) > 0\) và \[0 < P\left( B \right) < 1\]. Khẳng định nào sau đây đúng?
\(P\left( {B|A} \right) = \frac{{P\left( B \right) + P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) - P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|\overline B } \right) + P\left( {\overline B } \right)P\left( {A|B} \right)}}\).
\(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\).
Cho hai biến cố \[A\] và \[B\], với \[P\left( A \right) = 0,2\], \[P\left( B \right) = 0,26\], \[P\left( {B|A} \right) = 0,7\]. Tính \[P\left( {A|B} \right)\].
\(\frac{7}{{13}}\).
\(\frac{6}{{13}}\).
\(\frac{4}{{13}}\).
\(\frac{9}{{13}}\).
Khảo sát những người xem bộ phim hoạt hình vừa được phát hành cho thấy \(70\% \) người xem là trẻ em và \(30\% \) là người lớn. Trong số các trẻ em đến xem phim có \(50\% \) yêu thích bộ phim và khẳng định sẽ đi xem tiếp phần 2, \(30\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(20\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Trong số những người lớn đi xem phim có \(20\% \) yêu thích bộ phim và khẳng định sẽ xem tiếp phần 2, \(10\% \) yêu thích bộ phim nhưng sẽ không xem tiếp phần 2; \(70\% \) còn lại không thích bộ phim và không xem tiếp phần 2. Chọn ngẫu nhiên 1 người đã xem phim.
(a)Biết người được chọn là trẻ em, xác suất để người đó yêu thích bộ phim là \(0,56\).
(b)Xác suất để người đó không xem tiếp phần 2 là \(0,59\).
(c)Biết người đó sẽ xem tiếp phần 2 của bộ phim, xác suất để người đó là trẻ em lớn hơn \(0,85\).
(d)Biết người đó yêu thích bộ phim, xác suất để người đó không xem tiếp phần 2 là \(0,37\) (làm tròn đến hàng phần trăm).
Một nhà máy có hai phân xưởng cùng sản xuất một loại sản phẩm. Phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) và phân xưởng thứ hai sản xuất \(40{\rm{\% }}\) tổng số sản phẩm của cả nhà máy. Tỉ lệ phế phẩm của từng phân xưởng lần lượt là \(16{\rm{\% }}\) và \(20{\rm{\% }}\). Lấy ngẫu nhiên một sản phẩm trong kho hàng của nhà máy.
(a) Xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.
(b) Xác suất để lấy được phế phẩm bằng 0,176.
(c) Giả sử đã lấy được phế phẩm, xác suất phế phẩm đó do phân xưởng thứ nhất sản xuất bằng 0,55 (kết quả làm tròn đến hàng phần trăm).
(d) Nếu lấy được sản phẩm tốt, khả năng sản phẩm đó do phân xưởng thứ hai sản xuất là cao hơn khả năng sản phẩm đó do phân xưởng thứ nhất sản xuất.
Nhân dịp kỷ niệm \[50\] năm ngày thành lập trường, các học sinh lựa chọn tham gia thi đấu thể thao hoặc biểu diễn văn nghệ. Lớp \[12A\] có \[60\% \] số học sinh tham gia thi đấu thể thao và còn lại \[40\% \] số học sinh tham gia biểu diễn văn nghệ. Biết rằng các bạn nữ đều tham gia biểu diễn văn nghệ. Trong số các bạn nam có \[20\% \] tham gia văn nghệ và \[80\% \] tham gia thi đấu thể thao. Chọn ngẫu nhiên \[1\] học sinh trong lớp. Biết rằng học sinh này tham gia biểu diễn văn nghệ, xác suất để học sinh này là nữ là bao nhiêu phần trăm?
Có ba đồng xu được đựng trong một hộp kín. Đồng xu thứ nhất là một đồng xu cân đối với tỷ lệ mặt ngửa và mặt sấp bằng nhau. Đồng xu thứ hai là một đồng xu bị lỗi có khả năng mặt ngửa xuất hiện là 70%. Đồng xu thứ ba là một đồng xu hai mặt ngửa (khi tung luôn ra mặt ngửa). Bạn An lấy ngẫu nhiên một đồng xu từ hộp và tung nó hai lần. Kết quả của hai lần tung cho thấy xuất hiện một lần mặt sấp và một lần mặt ngửa. Tính xác suất để đồng xu bạn đã chọn là đồng xu thứ hai (đồng xu bị lỗi) (Kết quả làm tròn đến hàng phần trăm).
Một nhà đầu tư đang xem xét đầu tư vào hai loại tài sản: Cổ phiếu và trái phiếu. Qua nghiên cứu thị trường có hai kịch bản sau có thể xảy ra:
Kịch bản Kinh tế tăng trưởng: Xác suất xảy ra kịch bản kinh tế tăng trưởng trong năm tới là \[60\% \]. Trong kịch bản này, xác suất cổ phiếu mang lại lợi nhuận cao là \[80\% \], và xác suất trái phiếu mang lại lợi nhuận cao là \[30\% \].
Kịch bản Kinh tế suy thoái: Xác suất xảy ra kịch bản kinh tế suy thoái trong năm tới là \[40\% \]. Trong kịch bản này, xác suất cổ phiếu mang lại lợi nhuận cao là \[10\% \], và xác suất trái phiếu mang lại lợi nhuận cao là \[70\% \].
Vào cuối năm, nhà đầu tư nhận thấy rằng trái phiếu đã mang lại lợi nhuận cao. Tính xác suất để kịch bản kinh tế trong năm đó là suy thoái (làm tròn kết quả đến hàng phần trăm).


