Dạng 7. Bài luyện tập có đáp án
59 câu hỏi
Cho nửa đường tròn đường kính BC = 2R. Từ điểm A trên nửa đường tròn vẽ AH vuông góc với BC Nửa đường tròn đường kính BH, CH lần lượt có tâm O1; O2 cắt AB, AC thứ tự tại D và E.
Chứng minh tứ giác ADHE là hình chữ nhật, từ đó tính DE biết R = 25 và BH = 10
Cho nửa đường tròn đường kính BC = 2R. Từ điểm A trên nửa đường tròn vẽ AH vuông góc với BC Nửa đường tròn đường kính BH, CH lần lượt có tâm O1; O2 cắt AB, AC thứ tự tại D và E.Chứng minh tứ giác BDEC nội tiếp đường tròn.
Cho nửa đường tròn đường kính BC = 2R. Từ điểm A trên nửa đường tròn vẽ AH vuông góc với BC Nửa đường tròn đường kính BH, CH lần lượt có tâm O1; O2 cắt AB, AC thứ tự tại D và E.Xác định vị trí điểm A để diện tích tứ giác đạt giá trị lớn nhất. Tính giá trị đó.
Cho đường tròn (O), đường kính AB, d1, d2 là các các đường thẳng lần lượt qua A, B và cùng vuông góc với đường thẳng AB. Lấy M, N là các điểm lần lượt thuộc d1, d2 sao cho = 900.
Chứng minh đường thẳng MN là tiếp tuyến của đường tròn (O).
Cho đường tròn (O), đường kính AB, d1, d2 là các các đường thẳng lần lượt qua A, B và cùng vuông góc với đường thẳng AB. Lấy M, N là các điểm lần lượt thuộc d1, d2 sao cho = 900.
Chứng minh AM. BN =
Cho đường tròn (O), đường kính AB, d1, d2 là các các đường thẳng lần lượt qua A, B và cùng vuông góc với đường thẳng AB. Lấy M, N là các điểm lần lượt thuộc d1, d2 sao cho = 900.
Xác định vị trí của M, N để diện tích tam giác MON đạt giá trị nhỏ nhất.
ChoABC có 3 góc nhọn, trực tâm là H và nội tiếp đường tròn (O). Vẽ đường kính AK.
Chứng minh tứ giác BHCK là hình hình hành.
ChoABC có 3 góc nhọn, trực tâm là H và nội tiếp đường tròn (O). Vẽ đường kính AK.Vẽ OM vuông góc với BC (M thuộc BC). Chứng minh H, M, K thẳng hàng và AH = 2.OM.
ChoABC có 3 góc nhọn, trực tâm là H và nội tiếp đường tròn (O). Vẽ đường kính AK.
Gọi A’, B’, C’ là chân các đường cao thuộc các cạnh BC, CA, AB của tam giác ABC. Khi BC cố định hãy xác định vị trí điểm A để tổng S = A’B’ + B’C’ + C’A’ đạt giá trị lớn nhất.
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I, gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
Chứng minh tứ giác IECB nội tiếp.
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I, gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
Chứng minh hệ thức:
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I, gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Cho đường tròn ( O; R ) và điểm A nằm ngoài đường tròn sao cho . Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Lấy D thuộc AB; E thuộc AC sao cho chu vi của tam giác ADE bằng 2R.
Chứng minh tứ giác ABOC là hình vuông.
Cho đường tròn ( O; R ) và điểm A nằm ngoài đường tròn sao cho . Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Lấy D thuộc AB; E thuộc AC sao cho chu vi của tam giác ADE bằng 2R.
Chứng minh DE là tiếp tuyến của đường tròn (O; R).
Cho đường tròn ( O; R ) và điểm A nằm ngoài đường tròn sao cho . Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Lấy D thuộc AB; E thuộc AC sao cho chu vi của tam giác ADE bằng 2R.
Tìm giá trị lớn nhất của diện tích ∆ADE.
Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB
Chứng minh rằng các điểm M, D, O, H cùng nằm trên một đường tròn.
Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB
Đoạn OM cắt đường tròn tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác MCD
Cho đường trong (O, R) và đường thẳng d không qua O cắt đường tròn tại hai điểm A, B Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn (C, D là các tiếp điểm). Gọi H là trung điểm của AB
Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD thứ tự tại P và Q. Tìm vị trí của điểm M trên d sao cho diện tích tam giác MPQ bé nhất.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và Chứng minh ba điểm C, B, D thẳng hàng.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và
Đường thẳng AC cắt đường tròn tại E; đường thẳng AD cắt đường tròn (O) tại F (E, F khác A). Chứng minh 4 điểm C, D, E, F cùng nằm trên một đường tròn.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ AC, AD thứ tự là đường kính của hai đường tròn (O) và
Một đường thẳng d thay đổi luôn đi qua A cắt (O) và thứ tự tại M và N. Xác định vị trí của d để CM + DN đạt giá trị lớn nhất.
Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MKAC (I AB,KAC)
Chứng minh: AIMK là tứ giác nội tiếp đường tròn.
Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MKAC (I AB,KAC)
Vẽ MP vuông góc BC (P thuộc BC). Chứng minh: .
Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MKAC (I AB,KAC)
Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.
Chứng minh AC + BD = CD
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.
Chứng minh .
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.
Chứng minh .
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.
Chứng minh OC // BM
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.
Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.
Chứng minh MN ^ AB
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N.
Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất
Cho nửa đường tròn tâm O đường kính . Điểm M di chuyển trên nửa đường tròn (M khác A và B). C là trung điểm của dây cung AM. Đường thẳng d là tiếp tuyến với nửa đường tròn tại B Tia AM cắt d tại điểm N. Đường thẳng OC cắt d tại E.Chứng minh: tứ giác OCNB nội tiếp.
Cho nửa đường tròn tâm O đường kính . Điểm M di chuyển trên nửa đường tròn (M khác A và B). C là trung điểm của dây cung AM. Đường thẳng d là tiếp tuyến với nửa đường tròn tại B Tia AM cắt d tại điểm N. Đường thẳng OC cắt d tại E.
Chứng minh: AC.AN = AO.AB
Cho nửa đường tròn tâm O đường kính . Điểm M di chuyển trên nửa đường tròn (M khác A và B). C là trung điểm của dây cung AM. Đường thẳng d là tiếp tuyến với nửa đường tròn tại B Tia AM cắt d tại điểm N. Đường thẳng OC cắt d tại E.
Chứng minh: NO vuông góc với AE.
Cho nửa đường tròn tâm O đường kính . Điểm M di chuyển trên nửa đường tròn (M khác A và B). C là trung điểm của dây cung AM. Đường thẳng d là tiếp tuyến với nửa đường tròn tại B Tia AM cắt d tại điểm N. Đường thẳng OC cắt d tại E.
Tìm vị trí điểm M sao cho (2.AM + AN) nhỏ nhất.
Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
Chứng minh ACBD là hình chữ nhật;
Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
Gọi H là trực tâm của tam giác BPQ. Chứng minh H là trung điểm của OA;
Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
Xác định vị trí của đường kính CD để tam giác BPQ có diện tích nhỏ nhất.
Trên đoạn thẳng AB cho điểm C nằm giữa A và B Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I)
Chứng minh tứ giác CPKB nội tiếp một đường tròn, chỉ rõ đường tròn này.
Trên đoạn thẳng AB cho điểm C nằm giữa A và B Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I)
Chứng minh .
Trên đoạn thẳng AB cho điểm C nằm giữa A và B Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I)
Giả sử A, B, I cố định. Hãy xác định vị trí của điểm C sao cho diện tích tứ giác ABKI lớn nhất.
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và.B Nối AC cắt MN tại E.
Chứng minh tứ giác IECB nội tiếp được trong một đường tròn.
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và.B Nối AC cắt MN tại E.
Chứng minh ∆AME ∆ACM và = AE.AC
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và.B Nối AC cắt MN tại E.
Chứng minh AE.AC - AI.IB = .
Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và.B Nối AC cắt MN tại E.
Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB = 2R. Hạ BN và DM cùng vuông góc với đường chéo AC.Chứng minh tứ giác: CBMD nội tiếp được
Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB = 2R. Hạ BN và DM cùng vuông góc với đường chéo AC. Chứng minh rằng: DBDC = DN.AC
Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB = 2R. Hạ BN và DM cùng vuông góc với đường chéo AC. Xác định vị trí của điểm D để diện tích hình bình hành ABCD có diện tích lớn nhất và tính diện tích trong trường hợp này
Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .
Chứng minh: Bốn điểm A, M, H, K thuộc một đường tròn.
Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .
Chứng minh: MN là phân giác của góc BMK
Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .
Khi M di chuyển trên cung nhỏ AB Gọi E là giao điểm của HK và BN.
Xác định vị trí của điểm M để (MK.AN + ME.NB) có giá trị lớn nhất.
Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB sao cho MA> MB (M¹A và M¹B), kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.
C/m 4 điểm A;M;H;Q cùng nằm trên một đường tròn.
Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB sao cho MA> MB (M¹A và M¹B), kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.
C/m:NQ.NA=NH.NM
Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB sao cho MA> MB (M¹A và M¹B), kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.
C/m MN là phân giác của góc
Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB sao cho MA> MB (M¹A và M¹B), kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.
Hạ đoạn thẳng MP vuông góc với BN;xác định vị trí của M trên cung AB để MQ.AN+MP.BN có giác trị lớn nhất.
Cho đường tròn (O) đường kính AB Gọi I là trung điểm của OA Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q. Chứng minh rằng các đường tròn (I) và (O) tiếp xúc nhau tại A
Cho đường tròn (O) đường kính AB Gọi I là trung điểm của OA Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q. Chứng minh IP // OQ.
Cho đường tròn (O) đường kính AB Gọi I là trung điểm của OA Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q. Chứng minh rằng AP = PQ.
Cho đường tròn (O) đường kính AB Gọi I là trung điểm của OA Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q. Xác định vị trí của P để tam giác AQB có diện tích lớn nhất.







