Chuyên đề 7: Phương trình (có đáp án)
117 câu hỏi
Giải các phương trình sau:
a)
b)
Cho phương trình bậc hai ẩn (m là tham số).
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1; x2 với mọi tham số m.
b) Tìm m để hai nghiệm x1; x2 của phương trình đã cho thỏa mãn điều kiện |x1-x2|=17.
Giải phương trình:
Giải phương trình:
Cho phương trình với x là ẩn số, m là tham số.
a) Giải phương trình (1) khi .
b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1 , x2 sao cho biểu thức đạt giá trị nhỏ nhất.
Cho phương trình .
a) Giải phương trình với m=-1.
b) Chứng minh rằng với mọi m phương trình (1) luôn có hai nghiệm phân biệt. Giả sử hai nghiệm là x1, x2 (x1<x2), khi đó tìm m để .
Cho phương trình . Gọi là hai nghiệm phân biệt của phương trình.
Không giải phương trình, hãy tính giá trị của biểu thức:
Cho phương trình với m là tham số.
1) Giải phương trình (1) khi m=2
2) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m Gọi là hai nghiệm của phương trình (1) lập phương trình bậc hai nhận và là nghiệm.
Giải phương trình
Cho phương trình: (1) (m là tham số)
a) Giải phương trình (1) với m=2.
b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m.
c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau.
Cho phương trình (1) ( với m là tham số).
a.Giải phương trình (1) khi m=1.
b) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện .
Cho phương trình
a) Giải phương trình khi m=0.
b) Tìm m để phương trình có 2 nghiệm trái dấu thỏa mãn
Cho phương trình: , với m là tham số.
a. Giải phương trình (1) khi m=2
b. Tìm các giá trị của m để phương trình (1) có hai nghiệm sao cho biểu thức đạt giá trị lớn nhất.
Giải phương trình
Cho phương trình: (1), với mlà tham số.
a. Giải phương trình (1) khi m=0.
b) Giải phương trình (1) khi m=1.
Giải phương trình
Giải phương trình:
Giải các phương trình sau trên tập số thực:
a)
b)
Cho phương trình (m là tham số). Tìm các giá trị nguyên của m để phương trình đã cho có hai nghiệm phân biệt sao cho tích của hai nghiệm này bằng -30. Khi đó, tính tổng hai nghiệm của phương trình.
Giải phương trình
Giải phương trình:
Giải phương trình:
Tìm m để phương trình có hai nghiệm mà nghiệm này gấp đôi nghiệm kia.
Cho phương trình , với x là ẩn số.
a) Giải phương trình (1) khi m=2.
b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thỏa mãn đẳng thức sau:
.
Giải phương trình
Cho phương trình (có ẩn số x).
a/ Chứng minh phương trình đã cho luôn có hai nghiệm với mọi m
Cho biểu thức . Tìm giá trị của m để B=1
Giải phương trình
Giải phương trình: .
Tìm các giá trị của tham số m để phương trình có hai nghiệm sao cho biểu thức đạt giá trị nhỏ nhất
Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1,x2 thỏa mãn
Giải phương trình:
Cho phương trình (m là tham số). Tìm giá trị m để phương trình đã cho có hai nghiệm thỏa mãn
Giải phương trình (2x-1)(x+2)=0
Tìm m để phương trình: x2 +5x+3m-1=0 (x là ẩn, m là tham số) có hai nghiệm x1, x2 thỏa mãn .
Giải phương trình:
b. Gọi x1 và x2 là nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
2.Cho phương trình: (1) (m là tham số).
a. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m.
Giải các phương trình sau:
a)
b)
Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn .
Cho phương trình: (1) (với x là ẩn số, m là tham số).
a) Giải phương trình (1) với m=4;
b) Xác định các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1; x2 thoả mãn điều kiện:
Tìm x biết:
a) 2x-3=0
b) |x+3|=2
Giải phương trình: .
Giải phương trình:
Giải phương trình:
Không sử dụng máy tính, hãy tìm nghiệm của phương trình
Giải phương trình:
a) 2x-1=0
b)
Cho phương trình:
a) Tìm m để phương trình có nghiệm.
b) Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để x1=2x2.
Xác định phương trình với ; b, c là các số và b+c=5. Biết rằng phương trình có hai nghiệm x1, x2 thỏa mãn .
Giải phương trình:
a)
b)
Giải phương trình: 3x-2=0
Cho phương trình là tham số. Tìm giá trị của m để phương trình có hai
nghiệm phân biệt thỏa mãn
Giải phương trình:
Giải phương trình: (không giải trực tiếp bằng máy tính)
Cho phương trình: (m là tham số). Tìm tất cả các giá trị tham số m để phương trình trên có hai nghiệm phân biệt thỏa mãn
Cho phương trình (m là tham số).
1) Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt.
Gọi x1, x2 là 2 nghiệm phân biệt của phương trình. Tìm các giá trị của m sao cho .
Giải phương trình:
Giải phương trình:
Cho phương trình: (1) (x là ẩn số, m là tham số).
a) Giải phương trình (1) khi m=2.
b) Chứng minh rằng với mọi giá trị của tham số m phương trình (1) luôn có hai nghiệm phân biệt. Gọi x1, x2 là hai nghiệm của phương trình (1), tìm m để
Giải các bất phương trình và các phương trình sau:
a) 4x-5>7
b) 2x+3(4x+2)=8
c)
Giải phương trình:
Cho phương trình: (m là tham số).
a) Giải phương trình với m=0
Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện:
Giải phương trình:
Giải phương trình:
Giải phương trình và hệ phương trình sau:
Cho phương trình bậc hai (m là tham số)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn hệ thức:
Cho phương trình (m là tham số)
Tìm các giá trị của m để phương trình có hai nghiệm thỏa mãn:
.
a) Giải phương trình (1)
Tìm tất cả các giá trị của tham số m để phương trình có
Giải các phương trình sau:
b)
Giải các phương trình sau:
a)
b)
c)
Giải phương trình:
Giải các phương trình sau:
a)
b)
Giải các phương trình:
a)
b)
Cho phương trình (x là ẩn số) (1)
a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
b) Gọi x1, x2 là các nghiệm của phương trình. Tìm m để biểu thức . đạt giá trị nhỏ nhất.
Cho phương trình (*) (x là ẩn số)
a) Định m để phương trình (*) có nghiệm
b) Định m để phương trình (*) có hai nghiệm x1, x2 thỏa điều kiện:
Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn .
Cho phương trình
a) Chứng tỏ phương trình luôn luôn có nghiệm x1, x2 với mọi m.
b) Tìm giá trị của m để
Cho phương trình: (ẩn x)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có hai nghiệm x1, x2 sao cho
Cho phương trình: (x là ẩn số, m là tham số)
a) Chứng tỏ phương trình luôn có nghiệm với mọi m
b) Tìm m để (với là các nghiệm của phương trình trên).








