Bài tập chuyên đề Toán 7 Dạng 7: Các trường hợp bằng nhau của tam giác vuông có đáp án
19 câu hỏi
Cho tam giác cân tại A. Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC.
Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC. Trên cạnh BC lấy điểm E sao cho BA=BE. Kẻ . Chứng minh rằng
Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC.
a) Chứng minh PB = PC và BH = CK.
b) Chứng minh ba điểm H, M, K thẳng hàng.
c) Gọi O là giao điểm của PA và HK.
Chứng minh
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D, E (D nằm giữa B và E) sao choBD=CE. Vẽ tại M, tại N. Gọi K là giao điểm của MD và NE. Chứng minh rằng:
a,
b, Chứng minh rằng:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ tại H, kẻ tại K.
Chứng minh rằng: a,
b, Chứng minh rằng :
c, Chứng minh rằng:
Cho tam giác ABC có M là trung điểm của BC, AM là tia phân giác góc A. Kẻ MH vuông góc với AB; MK vuông góc với AC. Chứng minh rằng: a,
b, Chứng minh rằng: cân tại A
Cho tam giác ABC vuông tại A có đường cao AH. Trên đoạn HC lấy điểm D sao cho. Từ C kẻ . Chứng minh rằng: a) Tam giác ABD là tam giác đều.
b, Chứng minh rằng EH song song với AC.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D sao cho BD= BA . Qua D vẽ đường thẳng vuông góc với BC cắt AC tại E.
a) Chứng minh rằng:.
b) Đường phân giác góc ngoài tại C cắt đường thẳng BE tại K. Tính
Cho tam giác ABC có và M là trung điểm của BC. Trên tia đối của tia CB lấy điểm D. Kẻ BK vuông góc với đường thẳng AD tại K.
Chứng minh rằng KM là tia phân giác của .
Cho tam giác ABC vuông cân đáy BC. Gọi M, N là trung điểm của AB, AC. Kẻ tại H, kẻ tại E. Chứng minh rằng:
a) Tam giác ABH cân
b) HM là tia phân giác góc BHE.
