2048.vn

Bài tập chuyên đề Toán 7 Dạng 2: Tỉ lệ thức. Tính chất của dãy tỉ số bằng nhau có đáp án
Quiz

Bài tập chuyên đề Toán 7 Dạng 2: Tỉ lệ thức. Tính chất của dãy tỉ số bằng nhau có đáp án

A
Admin
ToánLớp 711 lượt thi
37 câu hỏi
1. Tự luận
1 điểmKhông giới hạn

Tìm hai số x và y biết x/3 = y/4 và 2x + 3y = 36

Xem đáp án
2. Tự luận
1 điểmKhông giới hạn

Từ hai tỉ lệ thức của giả thiết ,ta cần nối lại tạo thành dãy tỉ số bằng nhau. Quan sát hai tỉ lệ thức ta thấy chúng có chung y vì vậy khi nối cần tạo thành phần chứa y giống nhau. Sau đó vẫn ý tưởng như ví dụ trên, chúng ta có 3 cách giải.

Cách 1. Đặt hệ số tỉ lệ k làm ẩn phụ. Biểu thị x, y, z theo hệ số tỉ lệ k.

Cách 2. Sử dụng tính chất dãy tỉ số bằng nhau.

Cách 3. Biểu diễn x, y theo z từ dãy tỉ số bằng nhau.

Xem đáp án
3. Tự luận
1 điểmKhông giới hạn

Tìm hai số x và y biết \[\frac{x}{2} = \frac{y}{3}\] và \[xy = 24\]

Xem đáp án
4. Tự luận
1 điểmKhông giới hạn

Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]

Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Xem đáp án
5. Tự luận
1 điểmKhông giới hạn

Một khu đất hình chữ nhật có chiều rộng và chiều dài tỉ lệ với 5 và 8. Diện tích bằng \[1960{m^2}\]. Tính chu vi hình chữ nhật đó.

Xem đáp án
6. Tự luận
1 điểmKhông giới hạn

Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :

\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]

Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]

Xem đáp án
7. Tự luận
1 điểmKhông giới hạn

Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]

Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]

Xem đáp án
8. Tự luận
1 điểmKhông giới hạn

Độ dài các cạnh của một tam giác tỉ lệ với nhau như thế nào, biết nếu cộng lần lượt từng độ dài hai đường cao của tam giác đó thì các tổng này tỉ lệ với 7; 6 ; 5.

Xem đáp án
9. Tự luận
1 điểmKhông giới hạn

Tìm x, y biết :

\[\frac{{1 + 2y}}{{18}} = \frac{{1 + 4y}}{{24}} = \frac{{1 + 6y}}{{6x}};\]

Xem đáp án
10. Tự luận
1 điểmKhông giới hạn

Tìm x,y biết :

\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]

Xem đáp án
11. Tự luận
1 điểmKhông giới hạn

Cho x, y thỏa mãn \[\frac{{2x + 1}}{5} = \frac{{3y - 2}}{7} = \frac{{2x + 3y - 1}}{{6x}}\]. Tìm x, y

Xem đáp án
12. Tự luận
1 điểmKhông giới hạn

Tìm các số x, y, z biết rằng:

\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]

Xem đáp án
13. Tự luận
1 điểmKhông giới hạn

Tìm các số x, y, z biết rằng:

\[3\left( {x - 1} \right) = 2\left( {y - 2} \right);4\left( {y - 2} \right) = 3\left( {z - 3} \right)\] và \[2x + 3y - z = 50\]

Xem đáp án
14. Tự luận
1 điểmKhông giới hạn

\[\frac{{2x}}{3} = \frac{{3y}}{4} = \frac{{4z}}{5}\] và \[x + y - z = 38\]

Xem đáp án
15. Tự luận
1 điểmKhông giới hạn

Tìm x, y, z biết rằng:

\[7x = 10y = 12z\]và \[x + y + z = 685;\]

Xem đáp án
16. Tự luận
1 điểmKhông giới hạn

\[\frac{{x + y}}{3} = \frac{{5 - z}}{1} = \frac{{y + z}}{2} = \frac{{9 + y}}{5};\]

Xem đáp án
17. Tự luận
1 điểmKhông giới hạn

\[\frac{{y + z + 1}}{x} = \frac{{z + x + 2}}{y} = \frac{{x + y - 3}}{z} = x + y + z\]

Xem đáp án
18. Tự luận
1 điểmKhông giới hạn

\[\frac{x}{{y + z + 2}} = \frac{y}{{x + z + 5}} = \frac{z}{{x + y - 7}} = x + y + z;\]

Xem đáp án
19. Tự luận
1 điểmKhông giới hạn

\[\frac{{xy + 1}}{9} = \frac{{xz + 2}}{{15}} = \frac{{yz + 3}}{{27}}\] và \[xy + yz + zx = 11\]

Xem đáp án
20. Tự luận
1 điểmKhông giới hạn

Cho \[\frac{a}{b} = \frac{c}{d}\]. Chứng minh rằng:

\[\left( {a + 2c} \right).\left( {b + d} \right) = \left( {a + c} \right).\left( {b + 2d} \right);\]

Xem đáp án
21. Tự luận
1 điểmKhông giới hạn

\[\frac{{{a^{2020}} + {b^{2020}}}}{{{c^{2020}} + {d^{2020}}}} = \frac{{{{\left( {a + b} \right)}^{2020}}}}{{{{\left( {c + d} \right)}^{2020}}}}\]

Xem đáp án
22. Tự luận
1 điểmKhông giới hạn

Cho \[\frac{a}{b} = \frac{c}{d}\]. Các số x, y, z, t thỏa mãn \[xa + yb \ne 0\] và \[zc + td \ne 0\]

Chứng minh \[\frac{{xa + yb}}{{za + tb}} = \frac{{xc + yd}}{{zc + td}}\]

Xem đáp án
23. Tự luận
1 điểmKhông giới hạn

Cho tỉ lệ thức \[\frac{{3x - y}}{{x + y}} = \frac{3}{4}\]. Tính giá trị của tỉ số \[\frac{x}{y}\]

Xem đáp án
24. Tự luận
1 điểmKhông giới hạn

Chứng minh rằng : Nếu \[2\left( {x + y} \right) = 5\left( {y + z} \right) = 3\left( {z + x} \right)\] thì \[\frac{{x - y}}{4} = \frac{{y - z}}{5}\]

Xem đáp án
25. Tự luận
1 điểmKhông giới hạn

Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:

\[\frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}} = {\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3};\]

Xem đáp án
26. Tự luận
1 điểmKhông giới hạn

Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:

\[\frac{{{a^3} + 8{b^3} + 27{c^3}}}{{{b^3} + 8{c^3} + 27{d^3}}} = \frac{a}{d}\].

Xem đáp án
27. Tự luận
1 điểmKhông giới hạn

Chứng minh nếu \[a\left( {y + z} \right) = b\left( {z + x} \right) = c\left( {x + y} \right)\] trong đó a, b, c khác nhau và khác 0 thì ta có \[\frac{{y - z}}{{a\left( {b - c} \right)}} = \frac{{z - x}}{{b\left( {c - a} \right)}} = \frac{{x - y}}{{c\left( {a - b} \right)}}\]

Xem đáp án
28. Tự luận
1 điểmKhông giới hạn

Cho a, b, c thỏa mãn \[\frac{a}{{2016}} = \frac{b}{{2018}} = \frac{c}{{2020}}\].  Chứng minh rằng :\[\frac{{{{\left( {a - c} \right)}^2}}}{4} = \left( {a - b} \right)\left( {b - c} \right)\]

Xem đáp án
29. Tự luận
1 điểmKhông giới hạn

Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].

 Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]

Xem đáp án
30. Tự luận
1 điểmKhông giới hạn

Cho \[\frac{x}{{y + z + t}} = \frac{y}{{z + t + x}} = \frac{z}{{t + x + y}} = \frac{t}{{x + y + z}}\]. Chứng minh rằng biểu thức sau có giá trị nguyên \[A = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]

Xem đáp án
31. Tự luận
1 điểmKhông giới hạn

Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]

Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]

Xem đáp án
32. Tự luận
1 điểmKhông giới hạn

Cho \[\frac{a}{b} = \frac{b}{c} = \frac{c}{a}\] và \[a + b + c \ne 0\]. Tính \[P = \frac{{{a^{49}}.{b^{51}}}}{{{c^{100}}}}\]

Xem đáp án
33. Tự luận
1 điểmKhông giới hạn

Cho a, b, c là ba số dương, thỏa mãn điều kiện : \[\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b}\]

Hãy tính giá trị của biểu thức \[B = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right)\].

Xem đáp án
34. Tự luận
1 điểmKhông giới hạn

Cho a, b, c thỏa mãn \[\frac{{a + b + c}}{{a + b - c}} = \frac{{a - b + c}}{{a - b - c}}\] và \[b \ne 0\].Chứng minh rằng : \[c = 0\]

Xem đáp án
35. Tự luận
1 điểmKhông giới hạn

Cho x, y, z khác 0, thỏa mãn \[\frac{{x - y}}{{x + y}} = \frac{{z - x}}{{z + x}}\]. Chứng minh rằng \[{x^2} = yz\]

Xem đáp án
36. Tự luận
1 điểmKhông giới hạn

Cho \[\frac{x}{3} = \frac{y}{4}\] và \[\frac{y}{5} = \frac{z}{6}\].Tính giá trị biểu thức \[A = \frac{{2x + 3y + 4z}}{{3x + 4y + 5z}}\] (giả thiết A có nghĩa)

Xem đáp án
37. Tự luận
1 điểmKhông giới hạn

Cho các số a; b; c khác 0 thỏa mãn \[\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\]

Tính giá trị của biểu thức \[P = \frac{{a{b^2} + b{c^2} + c{a^2}}}{{{a^3} + {b^3} + {c^3}}}\]

Xem đáp án
© All rights reserved VietJack