vietjack.com

40 câu Bài tập Hình học Khối đa diện cực hay có lời giải chi tiết (P1)
Quiz

40 câu Bài tập Hình học Khối đa diện cực hay có lời giải chi tiết (P1)

A
Admin
20 câu hỏiToánLớp 12
20 CÂU HỎI
1. Nhiều lựa chọn

 

Trong không gian Oxyz. Tính thể tích V của khối đa diện giới hạn bởi

mặt phẳng (P): 2x - 4y + 3z - 24 = 0 và các mặt phẳng tọa độ.

 

 

A. V = 576

B. V= 288

C. V = 192

D. V = 96

2. Nhiều lựa chọn

Cho khối nón có bán kính đáy R, độ dài đường sinh l.Tính thể tích của khối nón.

3. Nhiều lựa chọn

Tính thể tích của khối trụ biết bán kính đáy của hình trụ đó bằng a và thiết diện đi qua trục là một hình vuông.

4. Nhiều lựa chọn

Cho hình lập phương ABCD. A'B'C'D' có cạnh bằng a, một mặt phẳng cắt các

cạnh AA', BB', CC', DD' lần lượt tại M, N, P, Q. Biết AM=13a, CP=25a.

Thể tích khối đa diện ABCD.MNPQ 

5. Nhiều lựa chọn

Thể tích khối lập phương có cạnh bằng 10 cm là

6. Nhiều lựa chọn

Một khối trụ có hai đáy hình tròn (I;r) và (I',r). Mặt phẳng (β) đi qua I và I' đồng thời cắt hình trụ theo thiết diện là hình vuông có cạnh bằng 18. Tính thể tích khối trụ đã cho

7. Nhiều lựa chọn

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, AB = 2a,

AD = DC = a, cạnh bên SA vuông góc với đáy. Tính số đo của góc giữa

đường thẳng BC và mặt phang (SAC).

8. Nhiều lựa chọn

Thể tích V của khối trụ có bán kính đáy R và độ dài đường sinh l được tính theo công thức nào dưới đây?

9. Nhiều lựa chọn

Thế tích V của khối lăng trụ có chiều cao bằng h và diện tích đáy bằng B được tính theo công thức nào dưới đây?

A. V=13Bh

B. V=3Bh

C. V=Bh

D. V=12Bh

10. Nhiều lựa chọn

Cho hình chóp S.ABCD có đáy là hình chữ nhật AB=a, BC=2a,

cạnh bên SA vuông góc với đáy. Tính khoảng cách giữa hai đường

thẳng SA và CD.

A. a6

B. a5

C. a

D. 2a

11. Nhiều lựa chọn

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2, cạnh bên SA vuông góc với đáy, góc giữa cạnh bên SC và đáy bằng 60°. Tính thể tích của khối trụ có một đáy là đường tròn ngoại tiếp hình vuông ABCD và chiều cao bằng chiều cao của khối chóp S.ABCD.

12. Nhiều lựa chọn

 

Cho hình chóp S.ABCD có SA ^ (ABC), AB = 1, AC = 2 và BAC ^ = 60.

Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của

mặt cầu đi qua các điểm A, B, C, M, N.

 

 

13. Nhiều lựa chọn

 

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.

Góc giữa hai đường thẳng A'B và AC' bằng

 

14. Nhiều lựa chọn

Cho khối chóp tứ giác đều có cạnh đáy bằng a, cạnh bên bằng a. Thể tích của khối chóp đã cho bằng

15. Nhiều lựa chọn

 

Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, ABC^ = 60ο,

SA(ABCD), SA=3a2. Gọi O là tâm hình thoi ABCD. Khoảng cách

từ điểm O đến (SBC) bằng

 

 

16. Nhiều lựa chọn

Khối lăng trụ có diện tích đáy bằng 3a2, chiều cao bằng a có thể tích bằng

17. Nhiều lựa chọn

Diện tích xung quanh của hình trụ có bán kính đáy R = 3 và đường sinh l = 6 bằng

18. Nhiều lựa chọn

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a,

BC = a3. Biết thể tích khối chóp bằng a33. Khoảng cách từ điểm S

đến mặt phẳng (ABC) bằng

19. Nhiều lựa chọn

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = a2, AA' = a3.

Gọi a là góc giữa 2 mặt phẳng (ACD’) và (ABCD) (tham khảo hình vẽ).

Giá trị tana bằng:

A. 2

20. Nhiều lựa chọn

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, diện tích mỗi mặt bên bằng 2a3. Thể tích khối nón có đỉnh S và đường tròn đáy ngoại tiếp hình vuông ABCD bằng

© All rights reserved VietJack