vietjack.com

299 Bài trắc nghiệm hàm số mũ, hàm số Logarit siêu hay có lời giải chi tiết (P7)
Quiz

299 Bài trắc nghiệm hàm số mũ, hàm số Logarit siêu hay có lời giải chi tiết (P7)

V
VietJack
ToánLớp 123 lượt thi
40 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Một người vay ngân hàng số tiền 50 triệu đồng, mỗi tháng trả ngân hàng số tiền 4 triệu đồng và phải trả lãi suất cho số tiền còn nợ là 1,1% theo hình thức lãi kép. Giả sử sau n tháng người đó hết nợ. Khi đó n gần với số nào dưới đây?

13

15

16

14

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Ông A muốn mua một chiếc ô tô trị giá 1 tỉ đồng, nhưng vì chưa đủ tiền nên ông chọn mua bằng hình thức trả góp hàng tháng (số tiền trả góp mỗi tháng là như nhau) với lãi suất 12%/ năm và trả trức 500 triệu đồng. Hỏi mỗi tháng ông phải trả số tiền gần nhất vói số tiền nào dưới đây để sau đúng 2 năm, kể từ ngày mua xe, ông trả hết nợ, biết kỳ trả nợ đầu tiên sau ngày mua ô tô đúng một tháng và chỉ tính lãi hàng tháng trên số dư nợ thực tế của tháng đó?

23.573.000 (đồng).

23.537.000 (đồng).

22.703.000 (đồng).

24.443.000 (đồng).

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Anh Bảo gửi 27 triệu đồng vào ngân hàng theo thể thức lãi kép, kỳ hạn là một quý, với lãi suất 1,85% một quý. Hỏi thời gian tối thiểu bao nhiêu để anh Bảo có được ít nhất 36 triệu đồng tính cả vỗn lẫn lãi?

16 quý

20 quý

19 quý

15 quý

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Ông A vay ngân hàng 50 triệu đồng với lãi suất 0,67% /tháng. Ông ta muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông ta bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ mỗi tháng đều bằng nhau và bằng 3 triệu. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi bằng cách hoàn nợ đó, ông A cần trả ít nhất bao nhiêu tháng kể từ ngày vay đến lúc trả hết nợ ngân hàng (giả định trong thời gian này lãi suất không thay đổi)

17 tháng

19 tháng

18 tháng

20 tháng

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

2.921.000

3.387.000

2.944.000

7.084.000

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Mỗi tháng bà A gửi vào ngân hàng một khoản tiền không đổi với lãi suất cố định là 0,4% 1 tháng. Ba năm rưỡi kể từ ngày gửi khoản tiền đầu tiên, bà A rút toàn bộ số tiền để mua xe. Số tiền nhận về lấy đến hàng nghìn là 91.635.000. Hỏi khoản tiền gửi mỗi tháng của bà A là bao nhiêu?

2.000.000

1.800.000

1.500.000

2.500.000

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Tập hợp các số thực m để phương trình log2x=m có nghiệm thực là

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Hỏi phương trình: 3.2x+4.3x+5.4x=6.5x có tất cả bao nhiêu nghiệm thực

2

3

1

0

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Tìm số nghiệm nguyên của bất phương trình 6x+42x-1+2.3x

2

3

1

0

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình bên dưới

Biết rằng trục hoành là tiệm cận ngang của đồ thị. Tìm tất cả các giá trị thực của tham số m để phương trình fx=4m+2log42 có hai nghiệm dương phân biệt

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số thực m, n dương thỏa mãn log4m2=log6n=log9(m+n). Tính giá trị của P=mn

2

1

4

12

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình 9x-6x=22x+1 có bao nhiêu nghiệm âm

2

3

0

1

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Biết phương trình log20182x+1x=2log2019x2-12x có nghiệm duy nhất x=a+b2 trong đó a;b là những số nguyên. Khi đó a+b bằng

5

-1

2

1

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Số nghiệm thực của phương trình 4x-2x+2+3=0 là:

4

3

1

2

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Tìm các giá trị m để phương trình 3sinx+5cosx-m+5=logsinx+5cosx+10m+5 có nghiệm

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số thực x, y thỏa mãn log3x+yx2+y2+xy+2=xx-3+yy-3+xyTìm giá trị lớn nhất của biểu thức P=x+2y+3x+y+6

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tham số m để tổng các nghiệm của phương trình sau đạt giá trị nhỏ nhất: 

1+2x2-mm+1x-2.21+mx-x2=x2-mx-1.2mx1-m+x2-m2x

0

2

-12

12

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Cho phương trình m.ln2(x+1)-(x+2-m)ln(x+1)-x-2=0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0<x1<2<4<x2 là khoảng a;+ . Khi đó a thuộc khoảng

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Tổng tất cả các giá trị nguyên của tham số m để phương trình 3x-3+m-3x3+x3-9x2+24x+m.3x-3=3x+1 có ba nghiệm phân biệt bằng

45

38

34

27

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Cho phương trình 2x-12.log2x2-2x+3=4x-mlog22x-m+2 với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn -2019;2019 để phương trình có đúng 2 nghiệm phân biệt.

4036

4034

4038

4040

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Xét các số thực dương x, y thỏa mãn log31-yx+3xy=3xy+x+3y-4. Tìm giá trị nhỏ nhất Pmin của P=x+y

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Phương trình log32x-1x-12=3x2-8x+5 có hai nghiệm là a và ab (với a,b * và ab là phân số tối giản). Giá trị của b là

1

4

2

3

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [-10;10] để bất phương trình log32x2+x+m+1x2+x+12x2+4x+5-2m có nghiệm. Số phần tử của tập hợp S bằng

20

10

15

5

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số fx=lnx2+1+x+ex-e-x. Hỏi phương trình f3x+f2x-1=0 có bao nhiêu nghiệm thực?

3

0

2

1

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu số nguyên a thuộc (-2019;2019) để phương trình 1lnx+5+13x-1=x+a có hai nghiệm phân biệt

0

2022

2014

2015

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=fx có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị của tham số m để bất phương trình xm-2fsinx+2.2fsinx+m2-3.2fx-10 nghiệm đúng với mọi x. Số tập con của tập hợp S

4

1

2

3

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Số nghiệm của phương trình 50x+2x+5=3.7x

1

2

3

0

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x)=ax3+bx2+cx+d với a,b,c,d  R có đồ thị như hình vẽ.

Gọi S là tập hợp tất cả các giá trị nguyên thuộc đoạn -10;10 của tham số m để bất phương trình f1-x2+23x3-x2+83-fm0 có nghiệm. Số phần tử của tập hợp S bằng

9

10

12

11

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y=f(x) có bảng biến thiên như sau:

Giá trị lớn nhất của m để phương trình: e2f3x-132f2x+7fx+32=m có nghiệm trên đoạn 0;2

e5

e1513

e3

e4

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Có bao nhiêu giá trị nguyên dương của tham số m để tồn tại các số thực x, y thỏa mãn đồng thời e3x+5y-10-ex+3y-9=1-2x-2y và log253x+2y+4-m+6log5x+5+m2+9=0

3

5

4

6

Xem đáp án
31. Trắc nghiệm
1 điểmKhông giới hạn

Tổng tất cả các giá trị của tham số m để phương trình 2x2+4x+5-m2=logx2+4x+6m2+1 có đúng 1 nghiệm là

1

0

-2

4

Xem đáp án
32. Trắc nghiệm
1 điểmKhông giới hạn

Tổng tất cả các giá trị của tham số m để phương trình 12log22x2-4x+6x-m+1+x2=2x+x-m có đúng ba nghiệm phân biệt là

2

3

1

0

Xem đáp án
33. Trắc nghiệm
1 điểmKhông giới hạn

Tìm số giá trị nguyên của m thuộc [-20;20] để phương trình log2x2+m+xx2+4=2m-9x-1+1-2mx2+4 có nghiệm

12

23

25

10

Xem đáp án
34. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số dương x, y thỏa mãn log2(4x+y+2xy+2)y+2=8-2x-2y+2. Giá trị nhỏ nhất của P=2x+y là số có dạng M=ab+c với a,b, a>2. Tính S=a+b+c

17

7

19

3

Xem đáp án
35. Trắc nghiệm
1 điểmKhông giới hạn

Số các giá trị nguyên của tham số m để phương trình (m+1).16x-22m-3.4x+6m+5=0 có hai nghiệm trái dấu là

4

8

1

2

Xem đáp án
36. Trắc nghiệm
1 điểmKhông giới hạn

Biết rằng phương trình log22x-1+m=1+log3m+4x-4x2-1 có nghiệm thực duy nhất. Mệnh đề nào dưới đây đúng

Xem đáp án
37. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tất cả các giá trị thực của tham số m để phương trình x.log3x+1=log99x+12m có hai nghiệm thực phân biệt

Xem đáp án
38. Trắc nghiệm
1 điểmKhông giới hạn

Gọi S là tập hợp các giá trị nguyên dương của m để phương trình 2cosx-2+m-3cosx3+cos3x+6sin2x+9cosx+m-6.2cosx-2=2cosx+1+1 có nghiệm thực . Khi đó tổng của hai phần tử lớn nhất và nhỏ nhất của tập S bằng

28

21

24

4

Xem đáp án
39. Trắc nghiệm
1 điểmKhông giới hạn

Gọi S là tập hợp các giá trị nguyên của tham số m để phương trình 2log2x4+2log2x8-2m+2018=0 có ít nhất một nghiệm thuộc đoạn 1;2. Số phần tử của S

7

9

8

6

Xem đáp án
40. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x)=3x-4+(x+1).27-x-6x+3. Giả sử m0=aba,b, ab là phân s ti gin là giá trị nhỏ nhất của tham số thực m sao cho phương trình f7-46x-9x2+2m-1=0 có số nghiệm nhiều nhất. Tính giá trị của biểu thức P=a+b2

11

7

-1

9

Xem đáp án
© All rights reserved VietJack