vietjack.com

240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P4)
Quiz

240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P4)

V
VietJack
ToánLớp 123 lượt thi
30 câu hỏi
1. Trắc nghiệm
1 điểmKhông giới hạn

Trong các bất đẳng thức sau, bất đẳng thức nào sai?

Xem đáp án
2. Trắc nghiệm
1 điểmKhông giới hạn

Cho hai số thực dương a, b thỏa mãn logab = 2. Tính loga3b2(b2.a6)

Xem đáp án
3. Trắc nghiệm
1 điểmKhông giới hạn

Cho biết tập xác định của hàm số y = log12(-1 + log14x) là một khoảng có độ dài mn (phân số tối giản). Tính giá trị m + n.

6

5

4

7

Xem đáp án
4. Trắc nghiệm
1 điểmKhông giới hạn

Tính tích tất cả các nghiệm của phương trình [log2(4x)]2 + log2x28 = 8.

Xem đáp án
5. Trắc nghiệm
1 điểmKhông giới hạn

Ký hiệu f(x) = x1+12log4x+ 813logx22 + 112 - 1. Giá trị của f(f(2017)) bằng:

1500

2017

1017

2000

Xem đáp án
6. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tập xác định D của hàm số y = (2 - x)1-3

Xem đáp án
7. Trắc nghiệm
1 điểmKhông giới hạn

Cho a > 0, a 1, x, y là hai số thực khác 0. Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án
8. Trắc nghiệm
1 điểmKhông giới hạn

Tập xác định của hàm số y = lnxlog2x - 2

Xem đáp án
9. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) = 12x.5x2. Khẳng định nào sau đây là đúng:

Xem đáp án
10. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số y = (x + 1).e3x. Hệ thức nào sau đây đúng?

Xem đáp án
11. Trắc nghiệm
1 điểmKhông giới hạn

Gọi n là số nguyên dương sao cho 1log3x+1log32x+1log33x+...+1log3nx = 210log3x đúng với mọi x dương. Tìm giá trị của biểu thức P = 2n + 3.

P = 32

P = 40

P = 43

P = 23

Xem đáp án
12. Trắc nghiệm
1 điểmKhông giới hạn

Tính tổng S = 1 + 22log22 + 32log232 + 42log242+ ...+ 20172log220172.

Xem đáp án
13. Trắc nghiệm
1 điểmKhông giới hạn

Tập nghiệm của bất phương trình (2x2-4 - 1).lnx2 < 0

Xem đáp án
14. Trắc nghiệm
1 điểmKhông giới hạn

Tập nghiệm của bất phương trình log(x2 + 25) > log(10x) là

Xem đáp án
15. Trắc nghiệm
1 điểmKhông giới hạn

Tổng các nghiệm của phương trình log22x + 5log12x + 6 = 0 là:

38

10

5

12

Xem đáp án
16. Trắc nghiệm
1 điểmKhông giới hạn

Giá trị của biểu thức logaa2a23a45a715 (0 < a  1) bằng

3

125

95

2

Xem đáp án
17. Trắc nghiệm
1 điểmKhông giới hạn

Cho hàm số f(x) = x2e-x. Bất phương trình f'(x) 0 có tập nghiệm là:

Xem đáp án
18. Trắc nghiệm
1 điểmKhông giới hạn

Cho a, b là các số thực và f(x) = aln2017(x2+1+x)+ bxsin2018x + 2. Biết f(5logc6) = 6, tính giá trị của biểu thức P = f(-6logc5) với 0 < c 1

P = -2

P = 6

P = 4

P = 2

Xem đáp án
19. Trắc nghiệm
1 điểmKhông giới hạn

Cho a, b, c là các số thực thuộc đoạn [1;2] thỏa mãn log23a + log23b + log23c 1. Khi biểu thức P = a3 + b3 + c3 - 3(log2aa + log2bb + log2cc) đạt giá trị lớn nhất thì giá trị của tổng a + b + c là:

2

3.2133

4

6

Xem đáp án
20. Trắc nghiệm
1 điểmKhông giới hạn

Nếu a195< a157logb(2+7) > logb(2+5) thì:

Xem đáp án
21. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tất cả các giá trị thực của x để đồ thị hàm số y = log0,5x nằm phía trên đường thẳng y = 2

Xem đáp án
22. Trắc nghiệm
1 điểmKhông giới hạn

Cho p, q là các số thực thỏa mãn m = 1e2p-q, n = ep-2q biết m > n. So sánh p và q

Xem đáp án
23. Trắc nghiệm
1 điểmKhông giới hạn

Cho x > 0, x  1 thỏa mãn biểu thức 1log2x+1log3x+...+1log2017x = M. Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án
24. Trắc nghiệm
1 điểmKhông giới hạn

Tìm số nguyên n lớn nhất thỏa mãn n360 < 3480

n = 3

n = 4

n = 2

n = 5

Xem đáp án
25. Trắc nghiệm
1 điểmKhông giới hạn

Rút gọn biểu thức P = a.a2.1a43 : a724, (a > 0).

Xem đáp án
26. Trắc nghiệm
1 điểmKhông giới hạn

Cho a, b là các số thực dương thỏa mãn a  1, a 1b và logab = 5. Tính P = logabba.

Xem đáp án
27. Trắc nghiệm
1 điểmKhông giới hạn

Hình vẽ sau là đồ thị của ba hàm số y = xα, y = xβ, y = xγ với điều kiện x >0α, β, γ là các số thực cho trước. Mệnh đề nào dưới đây đúng?

Xem đáp án
28. Trắc nghiệm
1 điểmKhông giới hạn

Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình logm(2x2 + x + 3) logm(3x2 - x). Biết rằng x = 1 là một nghiệm của bất phương trình.

Xem đáp án
29. Trắc nghiệm
1 điểmKhông giới hạn

Cho 0 x; y 1 thỏa mãn 20171-x-y = x2+2018y2-2y+2019. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S = (4x2 + 3y)(4y2 + 3x) + 25xy. Khi đó M + m bằng bao nhiêu?

Xem đáp án
30. Trắc nghiệm
1 điểmKhông giới hạn

Tìm tập xác định D của hàm số y = log2017(9 - x2) + (2x - 3)-2018

Xem đáp án
© All rights reserved VietJack