2048.vn

10 câu  Trắc nghiệm Toán 10 chân trời sáng tạo Bài tập ôn tập chương 4 có đáp án (Vận dụng)
Quiz

10 câu Trắc nghiệm Toán 10 chân trời sáng tạo Bài tập ôn tập chương 4 có đáp án (Vận dụng)

VietJack
VietJack
ToánLớp 1020 lượt thi
10 câu hỏi
1. Trắc nghiệm
1 điểm

Cho biết tanα = –3 (0° ≤ α ≤ 180°). Giá trị của \(H = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng:

\(\frac{4}{3}\);

\( - \frac{5}{3}\);

\( - \frac{4}{3}\);

\(\frac{5}{3}\).

Xem đáp án
2. Trắc nghiệm
1 điểm

Cho biết sinα – cosα = \(\frac{1}{{\sqrt 5 }}\)(0° ≤ α, β ≤ 180°). Giá trị của \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \) bằng:

\(\frac{{\sqrt {15} }}{5}\);

\(\frac{{\sqrt {17} }}{5}\);

\(\frac{{\sqrt {19} }}{5}\);

\(\frac{{\sqrt {21} }}{5}\).

Xem đáp án
3. Trắc nghiệm
1 điểm

Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:

\(\frac{{\sqrt 5 }}{4}\);

\(\frac{{\sqrt 3 }}{4}\);

\(\frac{{\sqrt 2 }}{2}\);

\(\frac{{\sqrt 2 }}{4}\).

Xem đáp án
4. Trắc nghiệm
1 điểm

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

1;

2;

3;

4.

Xem đáp án
5. Trắc nghiệm
1 điểm

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

Tam giác vuông;

Tam giác cân;

Tam giác tù;

Tam giác đều.

Xem đáp án
6. Trắc nghiệm
1 điểm

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:

Tam giác cân;

Tam giác đều;

Tam giác thường;

Tam giác vuông.

Xem đáp án
7. Trắc nghiệm
1 điểm

Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.

Media VietJack

Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc của vị trí quan sát A trên mặt đất tới gốc cây là HB = 20 m, \(\widehat {BAC} = 45^\circ \). Chiều cao của cây gần nhất với giá trị nào sau đây?

17,5 m;

17 m;

16,5 m;

16 m.

Xem đáp án
8. Trắc nghiệm
1 điểm

Giả sử CD = h là chiều cao của tháp, trong đó C là chân tháp.

Media VietJack

Một người đứng tại vị trí A (\(\widehat {CAD} = 63^\circ ),\) không sang được bờ bên kia để đo chiều cao h của tháp nên chọn thêm một điểm B (ba điểm A, B, C thẳng hàng) cách A một khoảng 24 m và \[\widehat {CBD} = 48^\circ \] để tính toán được chiều cao của tháp. Chiều cao h của tháp gần nhất với:

18 m;

18,5 m;

60 m;

60,5 m.

Xem đáp án
9. Trắc nghiệm
1 điểm

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.

Media VietJack

Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

12 m;

19 m;

24 m;

29 m.

Xem đáp án
10. Trắc nghiệm
1 điểm

Từ hai vị trí A và B của một tòa nhà, người ta quan sát được đỉnh C của ngọn núi. Biết rằng độ cao của tòa nhà là AB = 70 m, phương nhìn AC tạo với phương ngang AH một góc bằng 30°, phương nhìn BC tạo với phương ngang BD một góc bằng 15°30’.

Media VietJack

Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

135 m;

234 m;

165 m;

195 m.

Xem đáp án
© All rights reserved VietJack